A073388 Convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
1, 4, 16, 56, 188, 608, 1920, 5952, 18192, 54976, 164608, 489088, 1443776, 4238336, 12382208, 36022272, 104407296, 301618176, 868765696, 2495715328, 7152286720, 20452548608, 58369409024
Offset: 0
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (4,0,-8,-4).
Programs
-
GAP
List([0..25], n->2^n*Sum([0..Int(n/2)],k->Binomial(n-k+1,1)*Binomial(n-k,k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^2 )); // G. C. Greubel, Oct 03 2022 -
Mathematica
CoefficientList[Series[1/(1-2*x-2*x^2)^2, {x,0,40}], x] (* G. C. Greubel, Oct 03 2022 *)
-
Sage
taylor( 1/(1-2*x-2*x^2)^2, x, 0, 24).list() # Zerinvary Lajos, Jun 03 2009; modified by G. C. Greubel, Oct 03 2022
Formula
a(n) = Sum_{k=0..n} b(k)*b(n-k), with b(k) = A002605(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+1, 1)*binomial(n-k, k)*2^(n-k).
a(n) = ((n+1)*U(n+1) + 2*(n+2)*U(n))/6, with U(n) = A002605(n), n >= 0.
G.f.: 1/(1-2*x*(1+x))^2.
a(n) = Sum_{k=0..floor((n+2)/2)} k*binomial(n-k+2, k)2^(n-k+1). - Paul Barry, Oct 15 2004