cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073389 Second convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.

Original entry on oeis.org

1, 6, 30, 128, 504, 1872, 6672, 23040, 77616, 256288, 832416, 2666496, 8441600, 26454528, 82174464, 253280256, 775316736, 2358812160, 7137023488, 21487386624, 64401106944, 192229535744, 571630694400, 1693996941312, 5004131659776, 14738997288960, 43293528760320
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Crossrefs

Third (m=2) column of triangle A073387, A073388.
Cf. A002605.

Programs

  • GAP
    List([0..25], n->2^n*Sum([0..Int(n/2)],k->Binomial(n-k+2,2)*Binomial(n-k,k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^3 )); // G. C. Greubel, Oct 03 2022
  • Mathematica
    CoefficientList[Series[1/(1-2x(1+x))^3,{x,0,25}],x]  (* Harvey P. Dale, Mar 14 2011 *)
  • Sage
    taylor( 1/(1-2*x-2*x^2)^3, x, 0, 25).list() # Zerinvary Lajos, Jun 03 2009; modified by G. C. Greubel, Oct 03 2022
    

Formula

a(n) = Sum_{k=0..n} b(k)*c(n-k) with b(k) = A002605(k) and c(k) = A073388(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+2, 2)*binomial(n-k, k)*2^(n-k).
a(n) = (n+3)*((n+1)*U(n+1) + (n+2)*U(n))/12, with U(n) = A002605(n), n >= 0.
G.f.: 1/(1-2*x*(1+x))^3.