cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073394 Seventh convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.

Original entry on oeis.org

1, 16, 160, 1248, 8304, 49344, 269184, 1372800, 6628512, 30584576, 135804416, 583471616, 2436145920, 9919484928, 39503038464, 154230921216, 591550292736, 2232748892160, 8305370185728, 30486351396864, 110551407403008, 396424924397568, 1406924861276160, 4945692873129984, 17231635316293632
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Examples

			G.f. = 1 + 16*x + 160*x^2 + 1248*x^3 + ... + 154230921216*x^15 + 591550292736*x^16 + 2232748892160*x^17 + 8305370185728*x^18 + ... - _Zerinvary Lajos_, Jun 03 2009
		

Crossrefs

Eighth (m=7) column of triangle A073387.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^8 )); // G. C. Greubel, Oct 06 2022
  • Mathematica
    CoefficientList[Series[1/(1-2*x-2*x^2)^8, {x,0,30}], x] (* G. C. Greubel, Oct 06 2022 *)
    LinearRecurrence[{16,-96,224,112,-1344,896,3712,-3168,-7424,3584,10752,1792,-7168,-6144,-2048,-256},{1,16,160,1248,8304,49344,269184,1372800,6628512,30584576,135804416,583471616,2436145920,9919484928,39503038464,154230921216},30] (* Harvey P. Dale, Nov 21 2023 *)
  • SageMath
    taylor( 1/(1-2*x-2*x^2)^8, x, 0, 26).list() # Zerinvary Lajos, Jun 03 2009; modified by G. C. Greubel, Oct 06 2022
    

Formula

a(n) = Sum_{k=0..n} b(k)*c(n-k) with b(k) = A002605(k) and c(k) = A073393(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+7, 7)*binomial(n-k, k)*2^(n-k).
a(n) = ((2322320 + 2869040*n + 1379232*n^2 + 332247*n^3 + 42533*n^4 + 2757*n^5 + 71*n^6)*(n+1)*U(n+1) + 4*(235900 + 375554*n + 207009*n^2 + 54174*n^3 + 7318*n^4 + 492*n^5 + 13*n^6)*(n+2)*U(n))/(2^8*3^6*5*7), with U(n) = A002605(n), n >= 0.
G.f.: 1/(1-2*x*(1+x))^8.

Extensions

Terms a(19) onward added by G. C. Greubel, Oct 06 2022