cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A226361 Numbers n such that sigma(n) = sigma(n+1) + sigma(n+2).

Original entry on oeis.org

378624, 661152, 5479092, 5526024, 7179624, 18744216, 122321970, 168201288, 215676636, 778701984, 1482154170, 1788138780, 1974360132, 2288979096, 3361923780, 4214315484, 4757106144, 4971510492, 6264306144, 6884356716, 10730488296, 11375549304, 16851779736
Offset: 1

Views

Author

Alex Ratushnyak, Jun 05 2013

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 10^7; t = {}; sig0 = 1; sig1 = 3; Do[sig2 = DivisorSigma[1, n + 2]; If[sig0 == sig1 + sig2, AppendTo[t, n]]; sig0 = sig1; sig1 = sig2, {n, nn}]; t (* T. D. Noe, Jun 05 2013 *)

Extensions

a(17)-a(23) from Donovan Johnson, Jun 05 2013

A226475 Numbers n such that sigma(n) + sigma(n+1) = sigma(n+2) + sigma(n+3).

Original entry on oeis.org

75, 113, 295, 533, 686, 2130, 14805, 26966, 30235, 35095, 135653, 355675, 432996, 590138, 1214588, 2692853, 2952064, 3375195, 3486795, 5973014, 6880351, 7334956, 22266602, 25841659, 30483834, 37416582, 38390010, 40952513, 41109593, 57242145
Offset: 1

Views

Author

Alex Ratushnyak, Jun 11 2013

Keywords

Comments

Sigma(n) is the sum of the divisors of n: A000203.

Examples

			sigma(75) + sigma(76) = 124 + 140 = 264, and sigma(77) + sigma(78) = 96 + 168 = 264, so 75 is in the sequence.
		

Crossrefs

Programs

A076528 Numbers n such that sigma(n) = sigma(n-1) - sigma(n-2).

Original entry on oeis.org

955, 1301, 11143, 38215, 89485, 152155, 167785, 254137, 303281, 473317, 574717, 813921, 918081, 1307023, 2008361, 3676243, 9878245, 10368513, 12548755, 19411481, 22493263, 42413485, 77766487, 81513817, 157874001, 240828973
Offset: 1

Views

Author

Joseph L. Pe, Oct 18 2002

Keywords

Examples

			sigma(955) = 1152 sigma(954) = 2106 sigma(953) = 954 and 1152 = 2106 - 954; hence 955 is a term of the sequence.
		

Crossrefs

Programs

Formula

a(n) = A073500(n)+1 - Alex Ratushnyak, Jul 06 2013.

Extensions

a(6)-a(26) from Donovan Johnson, Feb 01 2009

A076666 Numbers n such that sigma(n) + sigma(n+3) = sigma(n+1) + sigma(n+2).

Original entry on oeis.org

2012, 2096, 15892, 17888, 39916, 102784, 141008, 146227, 482144, 487865, 1321312, 1887008, 2749057, 3513881, 7141158, 16767172, 17503912, 28122834, 30534728, 37453779, 42140437, 60994100, 67777337, 78251933, 113091820, 113768920, 129868059, 199240914, 240859196, 302897372
Offset: 1

Views

Author

Joseph L. Pe, Oct 25 2002

Keywords

Comments

Each term of the sequence marks the start of four consecutive sigma-values for which the sum of the means equals the sum of the extremes.

Examples

			sigma(2012) + sigma(2015) = 3528 + 2688 = 6216; sigma(2013) + sigma(2014) = 2976 + 3240 = 6216, so 2012 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], DivisorSigma[1, # ] + DivisorSigma[1, # + 3] == DivisorSigma[1, # + 1] + DivisorSigma[1, # + 2] &]

Extensions

a(6)-a(26) from Donovan Johnson, Feb 01 2009
a(27)-a(30) from Alex Ratushnyak, Jun 29 2013

A347076 Numbers m such that tau(m) = tau(m-1) + tau(m+1) and simultaneously sigma(m) = sigma(m-1) + sigma(m+1).

Original entry on oeis.org

89484, 167784, 8587065618, 24033737496, 41249560520, 161721015522, 206958258156, 441151731162, 600656241732, 1013494535238, 4648478084262, 5099258875122, 7897343836494, 21060284613738, 26847208137084
Offset: 1

Views

Author

Jaroslav Krizek, Aug 15 2021

Keywords

Comments

Intersection of A073500 and A090502.
a(n) is even. If a(n) is odd then two consecutive numbers are perfect squares. This only happens with (0, 1) which does not give terms. - David A. Corneth, Aug 16 2021

Examples

			tau(89484) = tau(89483) + tau(89485); 12 = 4 + 8.
sigma(89484) = sigma(89483) + sigma(89485); 208824 = 91608 + 117216.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A073500, A090502.

Programs

  • Magma
    [m: m in [2..10^5] | #Divisors(m) eq #Divisors(m - 1) + #Divisors(m + 1) and &+Divisors(m) eq &+Divisors(m - 1) + &+Divisors(m + 1)]
  • Mathematica
    Select[Range[200000], DivisorSigma[{0, 1}, # - 1] + DivisorSigma[{0, 1}, # + 1] - DivisorSigma[{0, 1}, # ] == {0, 0} &] (* Amiram Eldar, Aug 16 2021 *)

Extensions

a(14)-a(15) from Martin Ehrenstein, Sep 24 2021

A226753 Numbers n such that sigma(n) + sigma(n+1) + sigma(n+2) = sigma(n+3) + sigma(n+4) + sigma(n+5).

Original entry on oeis.org

52, 56, 2199, 17312, 92444, 31768040, 41159079, 52236776, 79563436, 683321810, 689969123, 757808252, 881421986, 910016369, 22184779055
Offset: 1

Views

Author

Alex Ratushnyak, Jun 16 2013

Keywords

Comments

The sequence of corresponding sums begins: 272, 290, 10820, 86514, 473568, 162349956, 203060920, 258797664, 398693936, 3418531584, 3544794576, 3812186016, 4066082208, 4374966816.

Examples

			Sigma(52) + sigma(53) + sigma(54) = 98 + 54 + 120 = 272.
Sigma(55) + sigma(56) + sigma(57) = 72 + 120 + 80 = 272.
So 52 is in the sequence.
		

Crossrefs

Extensions

a(15) from Giovanni Resta, Jun 17 2013
Showing 1-6 of 6 results.