A073717 a(n) = T(2n+1), where T(n) are the tribonacci numbers A000073.
0, 1, 4, 13, 44, 149, 504, 1705, 5768, 19513, 66012, 223317, 755476, 2555757, 8646064, 29249425, 98950096, 334745777, 1132436852, 3831006429, 12960201916, 43844049029, 148323355432, 501774317241, 1697490356184, 5742568741225
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Meng-Han Wu, Henryk A. Witek, Rafał Podeszwa, Clar Covers and Zhang-Zhang Polynomials of Zigzag and Armchair Carbon Nanotubes, MATCH Commun. Math. Comput. Chem. (2025) Vol. 93, 415-462. See p. 437.
- Index entries for linear recurrences with constant coefficients, signature (3,1,1).
Programs
-
Magma
[n le 3 select (n-1)^2 else 3*Self(n-1) +Self(n-2) +Self(n-3): n in [1..31]]; // G. C. Greubel, Nov 19 2021
-
Mathematica
CoefficientList[Series[(x+x^2)/(1-3x-x^2-x^3), {x, 0, 30}], x] LinearRecurrence[{3,1,1},{0,1,4},30] (* Harvey P. Dale, Sep 07 2015 *)
-
Sage
def A073717_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x*(1+x)/(1-3*x-x^2-x^3) ).list() A073717_list(30) # G. C. Greubel, Nov 19 2021
Formula
a(n) = 3*a(n-1) + a(n-2) + a(n-3), a(0)=0, a(1)=1, a(2)=4.
G.f.: x*(1+x)/(1-3*x-x^2-x^3).
a(n+1) = Sum_{k=0..n} A216182(n,k). - Philippe Deléham, Mar 11 2013
Comments