cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A073783 First differences of composite numbers.

Original entry on oeis.org

2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1
Offset: 1

Views

Author

Lior Manor, Aug 11 2002

Keywords

Comments

Also, the highest common factors of pair of successive composite numbers. - Amarnath Murthy, Jan 31 2003
All terms are 1 or 2. Runs of 1's may be of arbitrary lengths, while the lengths of runs of 2's are 1 or 2. - Zak Seidov, Mar 18 2013

Examples

			a(7) = A002808(8) - A002808(7) = 15 - 14 = 1.
		

Crossrefs

a(n) = A136527(n, n+1).
Cf. A073445 (first differences).

Programs

  • Haskell
    a073783 n = a073783_list !! (n-1)
    a073783_list = zipWith (-) (tail a002808_list) a002808_list
    -- Reinhard Zumkeller, Jan 10 2013
    
  • Mathematica
    c[x_] := FixedPoint[x + PrimePi[#] + 1 &, x]; Differences[c /@ Range[106]] (* Jayanta Basu, Jul 09 2013 *)
  • PARI
    m=4;forcomposite(n=6,1e3,print1(n-m", ");m=n) \\ Charles R Greathouse IV, Mar 20 2013

Formula

a(n) = A002808(n+1) - A002808(n).
a(n) = A073784(n) + 1.

A375707 First differences minus 1 of nonsquarefree numbers.

Original entry on oeis.org

3, 0, 2, 3, 1, 1, 3, 0, 1, 0, 3, 3, 3, 3, 0, 2, 0, 0, 1, 1, 1, 3, 2, 0, 3, 3, 2, 0, 3, 0, 2, 3, 1, 1, 3, 1, 0, 0, 3, 3, 3, 3, 0, 2, 0, 2, 0, 0, 1, 3, 2, 0, 3, 3, 2, 0, 1, 1, 0, 2, 3, 1, 1, 3, 0, 1, 0, 2, 0, 3, 3, 3, 0, 2, 3, 1, 1, 3, 2, 0, 3, 3, 3, 3, 0, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2024

Keywords

Comments

Also the number of squarefree numbers between the nonsquarefree numbers A013929(n) and A013929(n+1).
Delete all 0's to get A120992.
The image is {0,1,2,3}.
Add 1 to all terms for A078147.

Examples

			The runs of squarefree numbers begin:
  (5,6,7)
  ()
  (10,11)
  (13,14,15)
  (17)
  (19)
  (21,22,23)
  ()
  (26)
  ()
  (29,30,31)
  (33,34,35)
		

Crossrefs

Positions of 0, 1, 2, 3 are A375709, A375710, A375711, A375712. This is a set partition of the positive integers into four blocks.
For runs of squarefree numbers:
- length: A120992, anti A373127
- min: A072284, anti A373408
- max: A373415, anti A007674
- sum: A373413, anti A373411
For runs of nonsquarefree numbers:
- length: A053797, anti A373409
- min: A053806, anti A373410
- max: A376164, anti A068781
- sum: A373414, anti A373412
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A046933 counts composite numbers between consecutive primes.
A073784 counts primes between consecutive composite numbers.
A093555 counts non-prime-powers between consecutive prime-powers.

Programs

  • Mathematica
    Differences[Select[Range[100],!SquareFreeQ[#]&]]-1
  • PARI
    lista(nmax) = {my(prev = 4); for (n = 5, nmax, if(!issquarefree(n), print1(n - prev - 1, ", "); prev = n));} \\ Amiram Eldar, Sep 17 2024

Formula

Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = 6/(Pi^2-6) = 1.550546... . - Amiram Eldar, Sep 17 2024

A091244 Number of irreducible polynomials between successive reducible GF(2)[X]-polynomials.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

Analogous to A073784.

Crossrefs

Cf. A091243(n)-1.

A130973 Number of primes between successive pairs of twin primes, for a(n) > 0.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 4, 2, 1, 3, 1, 2, 3, 10, 4, 7, 4, 3, 2, 1, 2, 18, 2, 2, 17, 1, 2, 6, 9, 3, 1, 1, 1, 8, 3, 2, 15, 1, 4, 1, 1, 7, 7, 4, 4, 3, 4, 1, 1, 7, 2, 5, 1, 5, 18, 2, 5, 4, 3, 1, 5, 1, 18, 12, 2, 8, 1, 4, 2, 5, 4, 1, 1, 1, 9, 10
Offset: 1

Views

Author

Omar E. Pol, Aug 23 2007

Keywords

Comments

a(k) corresponds to the k-th term in the isolated prime sequence A007510 or A134797. a(1) corresponds to 23. a(2) corresponds to 37. a(3) corresponds to 47 and 53. - Enrique Navarrete, Jan 28 2017
Lengths of the runs of consecutive integers in A176656. - R. J. Mathar, Feb 19 2017

Crossrefs

Cf. A001223, A007510 (isolated primes), A027883, A048614, A048198, A052011, A052012, A061273, A076777, A073784, A082602, A088700, A179067 (clusters of twin primes).
Showing 1-4 of 4 results.