cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073802 Number of common divisors of n and sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 1, 6, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 1, 4, 1, 4, 1, 3, 2, 2, 1, 3, 1, 1, 2, 2, 1, 4, 1, 4, 1, 2, 1, 6, 1, 2, 1, 1, 1, 4, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 2, 1, 2, 1, 6, 1, 2, 2, 3, 1, 6, 2, 3, 1, 2, 2, 6, 1, 1, 2, 1, 1, 4, 1, 2, 2
Offset: 1

Views

Author

Labos Elemer, Aug 13 2002

Keywords

Comments

From Jaroslav Krizek, Feb 18 2010: (Start)
Number of divisors d of number n such that d divides sigma(n).
a(n) = A000005(n) - A173438(n).
a(n) = A000005(n) for multiply-perfect numbers (A007691). (End)

Examples

			For n = 12: a(12) = 3; sigma(12) = 28, divisors of 12: 1, 2, 3, 4, 6, 12; d divides sigma(n) for 3 divisors d: 1, 2, 4.
n=96: d(96) = {1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96}, d(sigma(96)) = {1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252}, CD(n, sigma(n)) = {1, 2, 3, 4, 6, 12} so a(96) = 6.
		

Crossrefs

Programs

  • Magma
    [NumberOfDivisors(GCD(SumOfDivisors(n),n)): n in [1..100]]; // Vincenzo Librandi, Oct 09 2017
  • Mathematica
    g1[x_] := Divisors[x]; g2[x_] := Divisors[DivisorSigma[1, x]]; ncd[x_] := Length[Intersection[g1[x], g2[x]]]; Table[ncd[w], {w, 1, 128}]
    Table[Length[Intersection[Divisors[n], Divisors[DivisorSigma[1, n]]]], {n, 100}] (* Vincenzo Librandi, Oct 09 2017 *)
    a[n_] := DivisorSigma[0, GCD[n, DivisorSigma[1, n]]]; Array[a, 100] (* Amiram Eldar, Nov 21 2024 *)
  • PARI
    a(n)=numdiv(gcd(sigma(n),n)) \\ Charles R Greathouse IV, Mar 09 2014
    

Formula

See program.
a(n) = A000005(A009194(n)) = tau(gcd(n,sigma(n))). [Reinhard Zumkeller, Mar 12 2010]