A073855 Number of steps to reach 0 starting with n and applying the process x ->bigomega(x), where bigomega = A001222.
0, 1, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 4, 2, 3, 2, 3, 3, 3, 2, 4, 3, 3, 3, 3, 2, 3, 2, 3, 3, 3, 3, 4, 2, 3, 3, 4, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 4, 3, 4, 3, 3, 2, 4, 2, 3, 3, 4, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 3, 3, 2, 3, 4, 3, 2, 4, 3, 3, 3, 4, 2, 4, 3, 3, 3, 3, 3, 4, 2, 3, 3, 4, 2, 3, 2, 4, 3
Offset: 0
Examples
bigomega(36) = 4, bigomega(4) = 2, bigomega(2) = 1, bigomega(1) = 0, hence a(36) = 4.
Links
Programs
-
Maple
A073855 := proc(n) option remember; if n <=0 then 0; else 1+procname(numtheory[bigomega](n)) ; end if; end proc: seq(A073855(n),n=0..20) ; # R. J. Mathar, Jul 31 2017
-
Mathematica
Table[-1 + Length@ NestWhileList[PrimeOmega, n, # > 0 &], {n, 0, 105}] (* Michael De Vlieger, Jul 29 2017 *)
-
PARI
a(n)=if(n<=0,0,s=n; c=1; while(bigomega(s)>0,s=bigomega(s); c++); c)
-
PARI
A073855(n) = if(!n,n,1+A073855(bigomega(n))); \\ Antti Karttunen, Jul 28 2017
-
PARI
first(n) = my(v = vector(n-1)); v[1] = 1; for(i=2, #v, v[i] = 1 + v[bigomega(i)]); concat([0], v) \\ David A. Corneth, Jul 28 2017
Formula
a(n) = 1+A036430(n).
For n >= 1, a(n) = 1 + a(bigomega(n)). - Vladeta Jovovic, Jul 10 2004
With a(0) = 0 as the termination condition of the recurrence. - Antti Karttunen, Jul 28 2017
Extensions
More terms from Vladeta Jovovic, Jul 10 2004
Term a(0)=0 prepended by Antti Karttunen, Jul 28 2017