A113824
a(1)=1; a(n+1) = the least prime greater than 2*a(n) which is a(n) plus a power of two.
Original entry on oeis.org
1, 3, 7, 23, 151, 65687, 9007199254806679, 73795983494093013143, 205688069665150755269371147819668813122842057000180977011589271
Offset: 1
151 is there because 23 + 2^7 = 151 is prime.
A113878
a(1)=0; a(n+1) is the least number > a(n) such that Sum_{k=1..n+1} 2^a(k) is not composite.
Original entry on oeis.org
0, 1, 2, 4, 7, 16, 53, 66, 207, 1752, 5041, 6310
Offset: 1
-
a[1] = 0; a[n_] := a[n] = Block[{k = a[n - 1] + 1, s = Plus @@ (2^Array[a, n - 1])}, While[ !PrimeQ[s + 2^k], k++ ]; k]; Array[a, 12] (* Robert G. Wilson v *)
-
from sympy import isprime
def afind(limit):
print("0, 1", end=", ")
s, pow2 = 2**0 + 2**1, 2**2
for m in range(2, limit+1):
if isprime(s+pow2): print(m, end=", "); s += pow2
pow2 *= 2
afind(2000) # Michael S. Branicky, Jul 11 2021
A073925
Powers of 2 rearranged such that every partial sum (n>1) is composite.
Original entry on oeis.org
1, 8, 16, 2, 64, 4, 256, 1024, 32, 128, 512, 2048, 8192, 4096, 16384, 32768, 131072, 65536, 2097152, 262144, 524288, 1048576, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 2147483648, 1073741824
Offset: 1
a(2)=8 because 1+2=3, 1+4=5 are primes and 1+8=9 is composite.
-
N:= 100: # for terms before the first > 2^N
Cands:= [seq(2^i,i=0..N)]:
Res:= NULL: s:= 0: nC:= N+1:
found:= true;
while found do
found:= false;
for i from 1 to nC do
if not isprime(s+Cands[i]) then
Res:= Res, Cands[i];
s:= s + Cands[i];
Cands:= subsop(i=NULL, Cands);
nC:= nC-1;
found:= true;
break
fi
od
od:
Res; # Robert Israel, Apr 05 2020
A113914
(1,2,3) Jasinski-like positive power sequence.
Original entry on oeis.org
1, 5, 13, 29, 61, 131, 271, 569, 1381, 2789, 5581, 11171, 22369, 44741, 89491, 185543, 373273, 766229, 1532701, 3065411, 6130849, 12261701, 24700549, 49401101, 98802211, 202387391, 409557751, 819116231, 1638232471, 3276464969
Offset: 1
a(1) = 1 by definition.
a(2) = 2*1 + 3^1 = 5.
a(3) = 2*5 + 3^1 = 13.
a(4) = 2*13 + 3^1 = 29.
a(5) = 2*29 + 3^1 = 61.
a(6) = 2*61 + 3^2 = 271.
a(7) = 2*271 + 3^2 = 569.
a(32) = 2*6553461379 + 3^49 = 239299329230630636512841. Here 49 is a record value for the exponent.
A073926
Powers of 2 rearranged so that every partial sum after 1 is a proper prime power.
Original entry on oeis.org
A113927
a(1)=1, and recursively a(n+1) is the smallest prime p of the form p = 2*a(n) + 5^k for some k>0.
Original entry on oeis.org
1, 7, 19, 43, 211, 547, 4219, 8443, 17011, 34147, 71419, 142963, 1220989051, 3662681227, 19080811690579, 38161623381163, 76324467465451, 152648936884027, 305299094471179, 4656613483675581520483
Offset: 1
a(1) = 1 by definition.
a(2) = 2*1 + 5^1 = 7.
a(3) = 2*7 + 5^1 = 19.
a(4) = 2*19 + 5^1 = 43.
a(5) = 2*43 + 5^3 = 211.
a(6) = 2*211 + 5^3 = 547.
a(7) = 2*547 + 5^5 = 4219.
a(13) = 2*142963 + 5^13 = 1220989051.
a(20) = 2*305299094471179 + 5^31 = 4656613483675581520483, where 31 is a record exponent.
a(22) = 2*9313226967351163119091 + 5^45 = 28421709449030461369547296941307 and 45 is the new record exponent.
Original entry on oeis.org
2, 4, 9, 36, 6561, 252252704150178, 1650016588712720468
Offset: 1
a(6)-a(7) using Kim Walisch's primecount, from
Amiram Eldar, Mar 13 2020
Showing 1-7 of 7 results.
Comments