A073941 a(n) = ceiling((Sum_{k=1..n-1} a(k)) / 2) for n >= 2 starting with a(1) = 1.
1, 1, 1, 2, 3, 4, 6, 9, 14, 21, 31, 47, 70, 105, 158, 237, 355, 533, 799, 1199, 1798, 2697, 4046, 6069, 9103, 13655, 20482, 30723, 46085, 69127, 103691, 155536, 233304, 349956, 524934, 787401, 1181102, 1771653, 2657479, 3986219, 5979328, 8968992
Offset: 1
References
- Fred Schuh, The Master Book of Mathematical Recreations, Dover, New York, 1968. [See Table 18, p. 374. Only the terms from a(6) = 4 forward are shown in the table. The table is definitely related to this sequence.]
Links
- T. D. Noe, Table of n, a(n) for n = 1..500
- K. Burde, Das Problem der Abzählreime und Zahlentwicklungen mit gebrochenen Basen [The problem of counting rhymes and number expansions with fractional bases], J. Number Theory 26(2) (1987), 192-209. [The author deals with the representation of n in fractional bases k/(k-1) and its relation to counting-off games. Here k = 3. See the table on p. 207. See also the review in MathSciNet (MR0889384) by R. G. Stoneham.]
- B. Chen, R. Chen, J. Guo, S. Lee et al, On Base 3/2 and its sequences, arXiv:1808.04304 [math.NT], 2018.
- Tom Edgar, Hailey Olafson, and James Van Alstine, Approximating the Fibonacci Sequence, Integers 16 (2016), #A63.
Crossrefs
Same as log_2(A082125(n)), for n > 2. - Ralf Stephan, Apr 16 2002
Apart from initial term, same as A005428, which has further information.
Partial sums for various start indices are in A006999, A061419, A061418. - Ralf Stephan, Apr 17 2003
Is this the same as A081848/3?
The constant c is (2/9)*K(3) (see A083286). - Ralf Stephan, May 29 2003
Programs
-
Haskell
a073941 n = a073941_list !! (n-1) a073941_list = 1 : f [1] where f xs = x' : f (x':xs) where x' = (1 + sum xs) `div` 2 -- Reinhard Zumkeller, Oct 26 2011
-
Mathematica
f[s_] := Append[s, Ceiling[Plus @@ s/2]]; Nest[f, {1}, 41] (* Robert G. Wilson v, Jul 07 2006 *)
-
PARI
v=vector(100);s=v[1]=1;for(i=2,#v,s+=(v[i]=(s+1)\2));v \\ Charles R Greathouse IV, Feb 11 2011
-
Python
from itertools import islice def A073941_gen(): # generator of terms a, c = 1, 0 yield 1 while True: yield (a:=(c:=c+a)+1>>1) A073941_list = list(islice(A073941_gen(),70)) # Chai Wah Wu, Sep 20 2022
Formula
a(n) = ceiling(c*(3/2)^n-1/2) where c = 0.3605045561966149591015446628665... - Benoit Cloitre, Nov 22 2002
If 2^m divides a(i) then 2^(m-1)*3^1 divides a(i+1) and so on... until finally, 3^m divides a(i+m). - Ralf Stephan, Apr 20 2003
a(n) = A005428(n-2). - Tanya Khovanova and PRIMES STEP Senior group, Jun 03 2018
Comments