A073995
Number of strings of length n over GF(4) with trace 0 and subtrace 0.
Original entry on oeis.org
1, 1, 7, 28, 76, 256, 1072, 4288, 16576, 65536, 262912, 1051648, 4197376, 16777216, 67121152, 268484608, 1073790976, 4294967296, 17180065792, 68720263168, 274878693376, 1099511627776, 4398049656832, 17592198627328, 70368756760576, 281474976710656, 1125899957174272, 4503599828697088, 18014398710808576
Offset: 1
A073996
Number of strings of length n over GF(4) with trace 0 and subtrace 1.
Original entry on oeis.org
0, 1, 3, 12, 60, 256, 1008, 4032, 16320, 65536, 261888, 1047552, 4193280, 16777216, 67104768, 268419072, 1073725440, 4294967296, 17179803648, 68719214592, 274877644800, 1099511627776, 4398045462528, 17592181850112, 70368739983360, 281474976710656, 1125899890065408, 4503599560261632, 18014398442373120
Offset: 1
a(2;0,1)=1 since the one 4-ary string of trace 0, subtrace 1 and length 2 is { 11 }.
-
CoefficientList[Series[x^2 (6x^2-3x+1)/((1-2x)(1-4x)(1+4x^2)), {x,0,30}], x] (* Harvey P. Dale, Apr 03 2011 *)
A073997
Number of strings of length n over GF(4) with trace 1 and subtrace 0.
Original entry on oeis.org
1, 2, 3, 16, 76, 272, 1008, 4096, 16576, 65792, 261888, 1048576, 4197376, 16781312, 67104768, 268435456, 1073790976, 4295032832, 17179803648, 68719476736, 274878693376, 1099512676352, 4398045462528, 17592186044416, 70368756760576, 281474993487872, 1125899890065408, 4503599627370496, 18014398710808576
Offset: 1
A073999
Number of strings of length n over GF(4) with trace 1 and subtrace x where x = RootOf(z^2+z+1).
Original entry on oeis.org
0, 0, 3, 16, 60, 240, 1008, 4096, 16320, 65280, 261888, 1048576, 4193280, 16773120, 67104768, 268435456, 1073725440, 4294901760, 17179803648, 68719476736, 274877644800, 1099510579200, 4398045462528, 17592186044416, 70368739983360, 281474959933440, 1125899890065408, 4503599627370496, 18014398442373120
Offset: 1
-
LinearRecurrence[{6,-12,24,-32},{0,0,3,16},30] (* Harvey P. Dale, Mar 12 2019 *)
A074450
Let x = RootOf(z^2 + z + 1) and y = 1+x. Number of 4-ary Lyndon words of length n over GF(4) with trace 1 and subtrace x.
Original entry on oeis.org
0, 0, 1, 4, 12, 40, 144, 512, 1813, 6528, 23808, 87380, 322560, 1198080, 4473647, 16777216, 63160320, 238605640, 904200192, 3435973836, 13089411609, 49977753600, 191219367936, 733007751680, 2814749599332, 10825959997440, 41699995927744, 160842843834660, 621186153185280
Offset: 1
A074446
Number of 4-ary Lyndon words of length n over GF(4) with trace 0 and subtrace 0.
Original entry on oeis.org
1, 0, 2, 6, 15, 40, 153, 528, 1841, 6528, 23901, 87550, 322875, 1198080, 4474738, 16779264, 63164175, 238605640, 904213989, 3436000050, 13089461538, 49977753600, 191219550297, 733008101200, 2814750270420, 10825959997440, 41699998413248, 160842848628150, 621186162441675
Offset: 1
a(3;0,0)=2 since the two 4-ary Lyndon words of trace 0, subtrace 0 and length 3 are { 123, 132 }.
A074447
Number of 4-ary Lyndon words of length n over GF(4) with trace 0 and subtrace 1.
Original entry on oeis.org
0, 0, 1, 2, 12, 40, 144, 496, 1813, 6528, 23808, 87210, 322560, 1198080, 4473647, 16775168, 63160320, 238605640, 904200192, 3435947622, 13089411609, 49977753600, 191219367936, 733007402160, 2814749599332, 10825959997440, 41699995927744, 160842839041170, 621186153185280
Offset: 1
a(4;0,1)=2 since the two 4-ary Lyndon words of trace 0, subtrace 1 and length 4 are { 0011, 11xx }, where x = RootOf( z^2+z+1 ).
A074448
Number of 4-ary Lyndon words of length n over GF(4) with trace 1 and subtrace 0.
Original entry on oeis.org
1, 1, 1, 4, 15, 45, 144, 512, 1841, 6579, 23808, 87380, 322875, 1198665, 4473647, 16777216, 63164175, 238612920, 904200192, 3435973836, 13089461538, 49977848925, 191219367936, 733007751680, 2814750270420, 10825961287995, 41699995927744, 160842843834660, 621186162441675
Offset: 1
A074449
Number of 4-ary Lyndon words of length n over GF(4) with trace 1 and subtrace 1.
Original entry on oeis.org
0, 1, 2, 4, 12, 45, 153, 512, 1813, 6579, 23901, 87380, 322560, 1198665, 4474738, 16777216, 63160320, 238612920, 904213989, 3435973836, 13089411609, 49977848925, 191219550297, 733007751680, 2814749599332, 10825961287995, 41699998413248, 160842843834660, 621186153185280
Offset: 1
Let x = RootOf( z^2+z+1 ) and y = 1+x. a(2; y,x)=1 since the one 4-ary Lyndon word of trace y, subtrace x and length 2 is { 1x }.
Showing 1-9 of 9 results.
Comments