A073995
Number of strings of length n over GF(4) with trace 0 and subtrace 0.
Original entry on oeis.org
1, 1, 7, 28, 76, 256, 1072, 4288, 16576, 65536, 262912, 1051648, 4197376, 16777216, 67121152, 268484608, 1073790976, 4294967296, 17180065792, 68720263168, 274878693376, 1099511627776, 4398049656832, 17592198627328, 70368756760576, 281474976710656, 1125899957174272, 4503599828697088, 18014398710808576
Offset: 1
A073996
Number of strings of length n over GF(4) with trace 0 and subtrace 1.
Original entry on oeis.org
0, 1, 3, 12, 60, 256, 1008, 4032, 16320, 65536, 261888, 1047552, 4193280, 16777216, 67104768, 268419072, 1073725440, 4294967296, 17179803648, 68719214592, 274877644800, 1099511627776, 4398045462528, 17592181850112, 70368739983360, 281474976710656, 1125899890065408, 4503599560261632, 18014398442373120
Offset: 1
a(2;0,1)=1 since the one 4-ary string of trace 0, subtrace 1 and length 2 is { 11 }.
-
CoefficientList[Series[x^2 (6x^2-3x+1)/((1-2x)(1-4x)(1+4x^2)), {x,0,30}], x] (* Harvey P. Dale, Apr 03 2011 *)
A073997
Number of strings of length n over GF(4) with trace 1 and subtrace 0.
Original entry on oeis.org
1, 2, 3, 16, 76, 272, 1008, 4096, 16576, 65792, 261888, 1048576, 4197376, 16781312, 67104768, 268435456, 1073790976, 4295032832, 17179803648, 68719476736, 274878693376, 1099512676352, 4398045462528, 17592186044416, 70368756760576, 281474993487872, 1125899890065408, 4503599627370496, 18014398710808576
Offset: 1
A073998
Number of strings of length n over GF(4) with trace 1 and subtrace 1.
Original entry on oeis.org
0, 2, 7, 16, 60, 272, 1072, 4096, 16320, 65792, 262912, 1048576, 4193280, 16781312, 67121152, 268435456, 1073725440, 4295032832, 17180065792, 68719476736, 274877644800, 1099512676352, 4398049656832, 17592186044416, 70368739983360, 281474993487872, 1125899957174272, 4503599627370496, 18014398442373120
Offset: 1
a(2; x,y)=2 since the two 4-ary strings of trace x, subtrace y and length 2 are { 1y, y1 }.
A074005
Number of elements of GF(3^n) with trace 1 and subtrace 2.
Original entry on oeis.org
0, 2, 3, 6, 30, 81, 252, 702, 2187, 6642, 19602, 59049, 176904, 532170, 1594323, 4780782, 14351094, 43046721, 129146724, 387400806, 1162261467
Offset: 1
a(2;1,2)=2. Let GF(3^2) be defined by the field extension GF(3)[x]/( 2+b+b^2 ). The two elements of GF(3^2) with trace 1 and subtrace 2 are { 1+b, 2b }.
-
d = {(0, 0): [1], (0, 1): [0], (0, 2): [0], (1, 0): [1], (1, 1): [0], (1, 2): [0], (2, 0): [1], (2, 1): [0], (2, 2): [0]}
for n in (2..9):
for a in d.values(): a.append(0)
k. = GF((3, n))
for x in k:
d[(x.trace(), x.charpoly().list()[-3])][-1] += 1
print(d[(1, 2)]) # Andrey Zabolotskiy, Nov 07 2024
a(9) and a(14)-a(15) corrected, unverified terms a(17)-a(20) removed. Based on the original Data in
A074000-
A074005, a(17)-a(20) are possibly equal to 14351094, 43046721, 129146724, 387400806. -
Andrey Zabolotskiy, Nov 07 2024
Terms a(17)-a(20) recomputed and added again (verified that all the terms a(17)-a(20) conjectured by Andrey Zabolotskiy are correct), and added term a(21). -
Robin Visser, Dec 28 2024
A074001
Number of elements of GF(3^n) with trace 0 and subtrace 1.
Original entry on oeis.org
0, 2, 0, 12, 30, 72, 252, 702, 2268, 6480, 19602, 59292, 176904, 532170, 1592136, 4785156, 14351094, 43040160, 129146724, 387400806, 1162320516
Offset: 1
a(2;0,1)=2. Let GF(3^2) be defined by the field extension GF(3)[x]/( 2+b+b^2 ). The two elements of GF(3^2) with trace 0 and subtrace 1 are { 2+b, 1+2b }.
Terms a(13), a(15), a(16) corrected, unverified terms a(17)-a(20) removed. Based on the original Data in
A074000-
A074005, a(17)-a(20) are possibly equal to 14351094, 43053282, 129146724, 387400806. -
Andrey Zabolotskiy, Nov 11 2024
Terms a(17)-a(20) recomputed and added again (verified that the terms a(17), a(19), a(20) conjectured by Andrey Zabolotskiy are correct), and added term a(21). -
Robin Visser, Dec 28 2024
A074002
Number of elements of GF(3^n) with trace 0 and subtrace 2.
Original entry on oeis.org
0, 0, 6, 6, 30, 72, 252, 756, 2106, 6642, 19602, 59292, 176904, 530712, 1596510, 4780782, 14351094, 43040160, 129146724, 387440172, 1162202418
Offset: 1
Formula and terms a(14)-a(15) corrected, unverified terms a(17)-a(20) removed. Based on the original Data in
A074000-
A074005, a(17)-a(20) are possibly equal to 14351094, 43053282, 129146724, 387440172. -
Andrey Zabolotskiy, Nov 08 2024
Terms a(17)-a(20) recomputed and added again (verified that the terms a(17), a(19), a(20) conjectured by Andrey Zabolotskiy are correct), and added term a(21). -
Robin Visser, Dec 28 2024
A074003
Number of elements of GF(3^n) with trace 1 and subtrace 0.
Original entry on oeis.org
1, 0, 3, 9, 30, 81, 225, 756, 2187, 6561, 19602, 59049, 177633, 530712, 1594323, 4782969, 14351094, 43046721, 129127041, 387440172, 1162261467
Offset: 1
Terms a(13)-a(16) corrected, unverified terms a(17)-a(20) removed. Based on the original Data in
A074000-
A074005, a(17)-a(20) are possibly equal to 14351094, 43046721, 129127041, 387440172. -
Andrey Zabolotskiy, Nov 11 2024
Terms a(17)-a(20) recomputed and added again (verified that all the terms a(17)-a(20) conjectured by Andrey Zabolotskiy are correct), and added term a(21). -
Robin Visser, Dec 28 2024
A074004
Number of elements of GF(3^n) with trace 1 and subtrace 1.
Original entry on oeis.org
0, 1, 3, 12, 21, 81, 252, 729, 2187, 6480, 19845, 59049, 176904, 531441, 1594323, 4785156, 14344533, 43046721, 129146724, 387420489, 1162261467
Offset: 1
a(3;2,1)=3. Let GF(3^3) be defined by the field extension GF(3)[x]/( 1+b+2b^2+b^3 ). The three elements of GF(3^3) with trace 2 and subtrace 1 are { 2b, 1+b^2, 1+b+2b^2 }.
a(14) corrected, unverified terms a(17)-a(20) removed. Based on the original Data in
A074000-
A074005, a(17)-a(20) are possibly equal to 14344533, 43046721, 129146724, 387420489. -
Andrey Zabolotskiy, Nov 11 2024
Terms a(17)-a(20) recomputed and added again (verified that all the terms a(17)-a(20) conjectured by Andrey Zabolotskiy are correct), and added term a(21). -
Robin Visser, Dec 28 2024
Showing 1-9 of 9 results.
Comments