A074256 Numbers k such that the sum of factorials of the digits of k equals the sum of the primes from the smallest prime factor of k to the largest prime factor of k.
2, 242, 1323, 3200, 13050, 30000, 42432, 132300, 426205, 442244, 620425, 665353, 1261645, 1306254, 1453032, 1461363, 1523340, 1523466, 2025012, 2105334, 2134350, 2205102, 2613504, 2713421, 3005264, 3312400, 3314520, 3432000
Offset: 1
Examples
242 = 2*11^2 and 2+3+5+7+11 = 28 and 2!+4!+2! = 28.
Programs
-
Mathematica
okQ[n_]:=Module[{ifn=Transpose[FactorInteger[n]][[1]]}, Total[Prime[ Range[ PrimePi[ Min[ifn]], PrimePi[Max[ifn]]]]]==Total[IntegerDigits[n]!]]; Select[Range[ 2,3500000],okQ] (* Harvey P. Dale, Apr 21 2011 *)
-
PARI
isok(n)={my(d=digits(n), s=sum(k=1, #d, d[k]!), f=factor(n)[,1]); if(#f, forprime(p=f[1], f[#f], s-=p)); s==0} \\ Andrew Howroyd, Sep 18 2024
Extensions
More terms from Michel ten Voorde, Jun 20 2003
More terms from Sam Alexander, Feb 28 2005
Offset changed by Andrew Howroyd, Sep 18 2024
Comments