cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A072508 Decimal expansion of Backhouse constant.

Original entry on oeis.org

1, 4, 5, 6, 0, 7, 4, 9, 4, 8, 5, 8, 2, 6, 8, 9, 6, 7, 1, 3, 9, 9, 5, 9, 5, 3, 5, 1, 1, 1, 6, 5, 4, 3, 5, 5, 7, 6, 5, 3, 1, 7, 8, 3, 7, 4, 8, 4, 7, 1, 3, 1, 5, 4, 0, 2, 7, 0, 7, 0, 2, 4, 3, 7, 4, 1, 4, 0, 0, 1, 5, 0, 6, 2, 6, 5, 3, 8, 9, 8, 9, 5, 5, 9, 9, 6, 4, 5, 3, 1, 9, 4, 0, 1, 8, 6, 0, 3, 0, 9, 1, 0, 9, 9, 2
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

The reciprocal (A088751) of Backhouse's constant is the real zero of a certain power series. - T. D. Noe, Oct 14 2003

Examples

			1.4560749485826896713995953...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.5, p. 294.

Crossrefs

Continued fraction is in A074269.

Programs

  • Mathematica
    RealDigits[-1/x /. FindRoot[0 == 1 + Sum[x^n Prime[n], {n, 1000}], {x, {0, 1}}, WorkingPrecision -> 100]][[1]] (* T. D. Noe, corrected Apr 26 2013 *)

A104225 Decimal expansion of -x, where x is the real root of f(x) = 1 + Sum_{n} (twin_prime(n))*x^n.

Original entry on oeis.org

6, 6, 5, 0, 7, 0, 0, 4, 8, 7, 6, 4, 8, 5, 2, 2, 9, 2, 0, 4, 3, 4, 8, 7, 1, 4, 3, 2, 8, 0, 8, 7, 1, 4, 5, 8, 9, 4, 2, 2, 8, 1, 0, 5, 2, 6, 1, 3, 6, 4, 6, 0, 6, 0, 4, 2, 4, 0, 2, 8, 5, 9, 0, 6, 0, 9, 4, 1, 2, 3, 4, 0, 3, 7, 0, 7, 2, 8, 4, 1, 9, 5, 9, 0, 0, 9, 1, 0, 1, 5, 6, 4, 6, 4, 0, 0, 6, 4, 9, 8
Offset: 0

Views

Author

Jonathan Vos Post, Apr 01 2005

Keywords

Examples

			-0.665070048764852292...
		

References

  • S. R. Finch, "Kalmar's Composition Constant", Section 5.5 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 292-295, 2003.
  • Martin Gardner, "Patterns in Primes are a Clue to the Strong Law of Small Numbers." Sci. Amer. 243, 18-28, Dec. 1980.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.

Crossrefs

Programs

  • Mathematica
    ps={}; Do[If[PrimeQ[n]&&PrimeQ[n+2], AppendTo[ps, {n, n+2}]], {n, 3, 40001, 2}];
    ps=Flatten[ps];
    RealDigits[ -x /. FindRoot[0==1+Sum[x^n ps[[n]], {n, 1000}], {x, -0.665}, WorkingPrecision->100]][[1]] (* T. D. Noe *)

Formula

Decimal expansion of -x where x is the real root of f(x) = 1 + 3x + 5x^2 + 5x^3 + 7x^4 + 11x^5 + 13x^6 + 17x^7 + 19x^8 + 29x^9 + 31x^10 + 41x^11 + 43x^12 + 59x^13 + 61x^14 + 71x^15 + 73x^16 + ... where for n>0 the coefficient of x^n is the n-th twin prime.

Extensions

Offset corrected by Sean A. Irvine, May 24 2025
a(99) corrected by Michael De Vlieger, May 24 2025
Showing 1-2 of 2 results.