cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A088751 Decimal expansion of -x, the real root of the equation 0 = 1 + Sum_{k>=1} prime(k) x^k. The inverse of Backhouse's constant (A072508).

Original entry on oeis.org

6, 8, 6, 7, 7, 7, 8, 3, 4, 4, 6, 0, 6, 3, 4, 9, 5, 4, 4, 2, 6, 5, 4, 0, 2, 2, 3, 7, 0, 6, 7, 6, 9, 2, 6, 9, 2, 2, 7, 0, 0, 2, 6, 3, 7, 6, 2, 2, 5, 0, 4, 2, 0, 7, 3, 9, 3, 4, 2, 5, 8, 2, 9, 4, 0, 1, 1, 5, 3, 1, 0, 0, 8, 7, 7, 0, 0, 4, 3, 7, 3, 6, 6, 9, 6, 9, 5, 3, 0, 1, 0, 6, 7, 6, 8, 2, 5, 9, 0, 1
Offset: 0

Views

Author

T. D. Noe, Oct 14 2003

Keywords

Comments

This constant is computed in Finch's article. This number is easier to compute than Backhouse's constant. Except for an additional term of 0, the continued fraction expansion is the same as that of Backhouse's constant.

Examples

			0.68677783446063...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.5, p. 294.

Crossrefs

Programs

  • Mathematica
    RealDigits[ -x/.FindRoot[0==1+Sum[x^n Prime[n], {n, 1000}], {x, {0, 1}}, WorkingPrecision->100]][[1]]

A074269 Continued fraction for the Backhouse constant (A072508).

Original entry on oeis.org

1, 2, 5, 5, 4, 1, 1, 18, 1, 1, 1, 1, 1, 2, 13, 3, 1, 2, 4, 16, 4, 3, 12, 1, 2, 2, 1, 1, 15, 1, 1, 1, 2, 2, 1, 4, 5, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 6, 1, 22, 3, 11, 2, 1, 13, 2, 7, 2, 5, 2, 17, 1, 1, 4, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 3, 3, 14, 551, 1, 1, 1, 1, 8, 2, 28, 1, 5, 6
Offset: 0

Views

Author

Robert G. Wilson v, Sep 20 2002

Keywords

Crossrefs

Cf. A072508 (decimal expansion).

Programs

  • Mathematica
    (* down load the constant from the link above & set it equal to a *) ContinuedFraction[a, 100]

Extensions

Offset changed by Andrew Howroyd, Jul 06 2024

A030018 Coefficients in 1/(1+P(x)), where P(x) is the generating function of the primes.

Original entry on oeis.org

1, -2, 1, -1, 2, -3, 7, -10, 13, -21, 26, -33, 53, -80, 127, -193, 254, -355, 527, -764, 1149, -1699, 2436, -3563, 5133, -7352, 10819, -15863, 23162, -33887, 48969, -70936, 103571, -150715, 219844, -320973, 466641, -679232, 988627, -1437185, 2094446, -3052743
Offset: 0

Views

Author

Keywords

Comments

a(n+1)/a(n) => ~-1.456074948582689671... (see A072508). - Zak Seidov, Oct 01 2011

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          -add(ithprime(n-i)*a(i), i=0..n-1))
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Jun 13 2018
  • Mathematica
    max = 50; P[x_] := 1 + Sum[Prime[n]*x^n, {n, 1, max}]; s = Series[1/P[x], {x, 0, max}]; CoefficientList[s, x] (* Jean-François Alcover, Sep 24 2014 *)
  • PARI
    v=[];for(n=1,50,v=concat(v,-prime(n)-sum(i=1,n-1,prime(i)*v[#v-i+1])));v \\ Derek Orr, Apr 28 2015

Formula

Apply inverse of "INVERT" transform to primes: INVERT: a's from b's in 1+Sum a_i x^i = 1/(1-Sum b_i x^i).
a(n) = -prime(n) - Sum_{i=1..n-1} prime(i)*a(n-i), for n > 0. - Derek Orr, Apr 28 2015
a(n) = Sum_{k=0..n} (-1)^k * A340991(n,k). - Alois P. Heinz, Feb 01 2021

A030010 Inverse Euler transform of primes.

Original entry on oeis.org

2, 0, 1, 0, 2, -3, 2, -4, 4, -3, 4, -5, 10, -21, 20, -18, 34, -46, 64, -99, 126, -182, 258, -319, 464, -685, 936, -1352, 1888, -2570, 3690, -5188, 7292, -10501, 14742, -20766, 29610, -41650, 59052, -84338, 119602, -170279, 242256, -343356, 489550, -698073
Offset: 1

Views

Author

Keywords

Examples

			(1-x)^(-2) * (1-x^3)^(-1) * (1-x^5)^(-2) * (1-x^6)^3 * (1-x^7)^(-2) * ... = 1 + 2*x + 3*x^2 + 5*x^3 + 7*x^4 + ... .
		

Crossrefs

Programs

  • Mathematica
    pp = Prime[Range[n = 100]]; s = {};
    For[i = 1, i <= n, i++, AppendTo[s, i*pp[[i]] - Sum[s[[d]]*pp[[i-d]], {d, i-1}]]];
    Table[Sum[If[Divisible[i, d], MoebiusMu[i/d], 0]*s[[d]], {d, 1, i}]/i, {i, n}] (* Jean-François Alcover, May 10 2019 *)

Formula

Product_{k>=1} 1/(1-x^k)^{a(k)} = 1 + Sum_{n>=1} prime(n) * x^n.
From Vaclav Kotesovec, Oct 09 2019: (Start)
a(n) ~ -(-1)^n * A072508^n / n.
a(n) ~ -(-1)^n / (n * A088751^n). (End)

A104225 Decimal expansion of -x, where x is the real root of f(x) = 1 + Sum_{n} (twin_prime(n))*x^n.

Original entry on oeis.org

6, 6, 5, 0, 7, 0, 0, 4, 8, 7, 6, 4, 8, 5, 2, 2, 9, 2, 0, 4, 3, 4, 8, 7, 1, 4, 3, 2, 8, 0, 8, 7, 1, 4, 5, 8, 9, 4, 2, 2, 8, 1, 0, 5, 2, 6, 1, 3, 6, 4, 6, 0, 6, 0, 4, 2, 4, 0, 2, 8, 5, 9, 0, 6, 0, 9, 4, 1, 2, 3, 4, 0, 3, 7, 0, 7, 2, 8, 4, 1, 9, 5, 9, 0, 0, 9, 1, 0, 1, 5, 6, 4, 6, 4, 0, 0, 6, 4, 9, 8
Offset: 0

Views

Author

Jonathan Vos Post, Apr 01 2005

Keywords

Examples

			-0.665070048764852292...
		

References

  • S. R. Finch, "Kalmar's Composition Constant", Section 5.5 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 292-295, 2003.
  • Martin Gardner, "Patterns in Primes are a Clue to the Strong Law of Small Numbers." Sci. Amer. 243, 18-28, Dec. 1980.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.

Crossrefs

Programs

  • Mathematica
    ps={}; Do[If[PrimeQ[n]&&PrimeQ[n+2], AppendTo[ps, {n, n+2}]], {n, 3, 40001, 2}];
    ps=Flatten[ps];
    RealDigits[ -x /. FindRoot[0==1+Sum[x^n ps[[n]], {n, 1000}], {x, -0.665}, WorkingPrecision->100]][[1]] (* T. D. Noe *)

Formula

Decimal expansion of -x where x is the real root of f(x) = 1 + 3x + 5x^2 + 5x^3 + 7x^4 + 11x^5 + 13x^6 + 17x^7 + 19x^8 + 29x^9 + 31x^10 + 41x^11 + 43x^12 + 59x^13 + 61x^14 + 71x^15 + 73x^16 + ... where for n>0 the coefficient of x^n is the n-th twin prime.

Extensions

Offset corrected by Sean A. Irvine, May 24 2025
a(99) corrected by Michael De Vlieger, May 24 2025

A247818 Decimal expansion of 1/(theta*P'(theta)), a constant appearing in the asymptotic evaluation of the coefficients q_n in 1/(1+P(x)), where P(x) is the generating function of the primes and theta the unique zero of P(x) in [-3/4, 0].

Original entry on oeis.org

6, 2, 2, 3, 0, 6, 5, 7, 4, 5, 7, 0, 0, 8, 5, 6, 6, 4, 6, 2, 1, 3, 4, 1, 1, 8, 1, 2, 7, 0, 0, 0, 9, 6, 0, 5, 1, 3, 0, 7, 8, 4, 3, 0, 1, 4, 7, 9, 0, 0, 7, 8, 5, 4, 2, 0, 3, 7, 4, 7, 2, 8, 1, 5, 6, 2, 4, 6, 0, 4, 6, 7, 8, 6, 9, 4, 6, 2, 4, 0, 8, 4, 8, 9, 4, 6, 3, 5, 8, 8, 2, 2, 0, 8, 7, 6, 3, 6, 8, 2
Offset: 0

Views

Author

Jean-François Alcover, Sep 24 2014

Keywords

Examples

			-0.622306574570085664621341181270009605130784301479...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5. Kalmár’s Composition Constant, p. 294 and p. 551.

Crossrefs

Programs

  • Mathematica
    digits = 100; P[x_] := 1 + Sum[Prime[n]*x^n, {n, 1, 1000}]; PPrime[x_] := Sum[n*Prime[n]*x^(n-1), {n, 1, 1000}]; theta = x /. FindRoot[P[x] == 0, {x, -3/4}, WorkingPrecision -> digits+5]; RealDigits[1/(theta*PPrime[theta]), 10, digits] // First

Formula

q_n ~ (1/(theta*P'(theta))) * (1/theta^n).

A114041 Decimal expansion of -x, the real root of the power series with semiprime coefficients.

Original entry on oeis.org

3, 6, 9, 8, 6, 8, 7, 4, 3, 4, 8, 4, 8, 4, 7, 9, 4, 4, 8, 9, 5, 8, 4, 8, 7, 7, 0, 2, 9, 5, 9, 4, 8, 1, 8, 7, 4, 3, 2, 7, 8, 7, 2, 0, 9, 7, 9, 6, 5, 6, 8, 5, 8, 7, 3, 7, 5, 5, 8, 7, 2, 2, 6, 6, 0, 4, 5, 3, 4, 5, 8, 6, 0, 3, 2, 0, 9, 6, 4, 8, 4, 8, 5, 2, 1, 2, 8, 4, 5, 3, 3, 9, 5, 2, 3, 7, 1, 8, 2
Offset: 1

Views

Author

Jonathan Vos Post, Feb 01 2006

Keywords

Comments

This is the semiprime analog of A088751.
Terms computed by T. D. Noe.

Examples

			-0.36986874348484794489584877...
		

Crossrefs

Programs

  • Mathematica
    A001358:= Select[Range[3000], PrimeOmega[#] == 2 &]; RealDigits[-x/.FindRoot[-1 == Sum[A001358[[j]]*x^j, {j, 500}], {x, {0, 0.5}}, WorkingPrecision -> 105], 10, 100][[1]]//First (* G. C. Greubel, Dec 31 2019 *)

Formula

Digits of -x where x is the real root of 1 + 4x + 6x^2 + 9x^3 + 10x^4 + 14x^5 ... = 1 + Sum_{i>=1} A001358(i)*x^i.

A368862 Numerators of an infinite series that converges to the negative inverse of Backhouse's constant (A088751).

Original entry on oeis.org

-1, -3, 1, 1, -1, 5, -19, -9, 41, -103, 17, 289, -169, 331, -689, -4991, 3999, 7833, -6509, 21827, -22165, -87637, 119441, -190981, -152513, 1482023, -425985, -1045091, 1071237, -14108791, 5845271, 39852203, -35832801, 54451699, 44061359, -435442725, 261309855, -22217917
Offset: 1

Views

Author

Raul Prisacariu, Jan 08 2024

Keywords

Comments

Whittaker's root series formula is applied to 1 + Sum_{k>=1} prime(k) x^k. The following infinite series that converges to the negative inverse of Backhouse's constant (-x) is obtained:
x = -1/(1*2) - 3/(2*1) + 1/(1*1) + 1/(1*2) - 1/(2*3) + 5/(3*7) - 19/(7*10) - 9/(10*13) + 41/(13*21) - 103/(21*26) + 17/(26*33) + 289/(33*53) ...
The denominators of the infinite series are obtained by multiplying the absolute values of 2 consecutive terms from the sequence A030018.

Examples

			a(1) = -1;
a(2) = -3;
a(3) = -det ToeplitzMatrix((3,2),(3,5)) = 1;
a(4) = -det ToeplitzMatrix((3,2,1),(3,5,7)) = 1;
a(5) = -det ToeplitzMatrix((3,2,1,0),(3,5,7,11)) = -1;
a(6) = -det ToeplitzMatrix((3,2,1,0,0),(3,5,7,11,13)) = 5;
a(7) = -det ToeplitzMatrix((3,2,1,0,0,0),(3,5,7,11,13,17)) = -19.
		

Crossrefs

Formula

a(1) = -1.
For n > 1, a(n) = -det ToeplitzMatrix((c(2),c(1),c(0),0,0,...,0),(c(2),c(3),c(4),...,c(n))), where c(0)=1 and c(n) is the n-th prime number.

Extensions

a(21)-a(38) from Stefano Spezia, Jan 09 2024
Showing 1-8 of 8 results.