cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A033680 a(1) = 1; a(n) is smallest number >= a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.

Original entry on oeis.org

1, 1, 3, 11, 13, 29, 39, 49, 83, 141, 247, 273, 291, 347, 373, 401, 441, 567, 571, 651, 903, 957, 1001, 1129, 1401, 1457, 1467, 1561, 1889, 2083, 2169, 2523, 2717, 2743, 3447, 3509, 3711, 4087, 4899, 4983, 5087, 5151, 5263, 5429, 5551, 6017, 7389, 7839
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Block[{k = a[n - 1], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 48}] (* Robert G. Wilson v *)
    nxt[{c_,a_}]:=Module[{x=a},While[!PrimeQ[FromDigits[Join[c,IntegerDigits[ x]]]],x+=2];{Join[c,IntegerDigits[x]],x}]; NestList[nxt,{{1},1},50][[All,2]] (* Harvey P. Dale, Sep 14 2018 *)

Extensions

More terms from Patrick De Geest, May 15 1998
More terms from Robert G. Wilson v, Aug 05 2005

A092528 a(1) = 1; a(n) = smallest number such that the juxtaposition a(1)a(2)...a(n) is a prime.

Original entry on oeis.org

1, 1, 3, 11, 1, 3, 3, 53, 13, 39, 9, 3, 21, 53, 79, 11, 19, 59, 27, 49, 21, 23, 211, 153, 189, 3, 161, 121, 167, 183, 193, 77, 21, 349, 107, 129, 343, 119, 241, 143, 37, 77, 31, 159, 183, 531, 1517, 7, 59, 159, 123, 9, 1513, 203, 343, 59, 9, 999, 813, 421, 209, 517, 3
Offset: 1

Views

Author

Christer Mauritz Blomqvist (MauritzTortoise(AT)hotmail.com), Apr 08 2004

Keywords

Examples

			The first few terms are 1,1,3,11,1,3,3,53,13,39,9,3. The next integer you can concatenate to the end of this to get a prime is 21 so the next term is 21. If you require terms to have all digits odd you would get 399 instead, giving A069604.
		

Crossrefs

Programs

  • Mathematica
    nn[a_] := For[b = 1, ! PrimeQ[n], b = b + 1, n = a*10^Floor[Log[10, b] + 1]] (* o get the next number in the sequence if a is the concatenation of all previous. *) nnt[m_] := (t = 1; Table[c = nnn[t]; t = c[[2]]; c[[1]], {m}]) (* To get a table of the first n terms, ignoring a(1)=1*)
    a[1] = 1; a[n_] := a[n] = Block[{k = 1, c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 63}] (* Robert G. Wilson v, Aug 05 2005 *)

A074338 a(1) = 2; a(n) is smallest number > a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.

Original entry on oeis.org

2, 3, 9, 11, 13, 63, 71, 93, 187, 189, 201, 207, 243, 347, 369, 439, 473, 529, 611, 847, 1209, 1331, 1423, 1581, 1593, 1617, 1679, 1791, 2067, 2529, 2541, 2563, 2751, 3347, 3583, 3677, 3777, 4359, 4701, 4771, 5657, 6183, 6193, 6353, 6511, 6539, 6769, 6939
Offset: 1

Views

Author

Zak Seidov, Sep 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 2; a[n_] := a[n] = Block[{k = a[n - 1] + 1 + Mod[a[n - 1], 2], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 48}] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Aug 05 2005

A074340 a(1) = 5; a(n) is smallest number > a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.

Original entry on oeis.org

5, 9, 23, 37, 39, 47, 57, 97, 119, 187, 257, 271, 273, 281, 309, 367, 449, 529, 687, 759, 933, 1031, 1131, 1237, 1263, 1343, 1731, 1861, 2177, 2337, 2589, 2607, 2743, 3191, 3199, 3281, 3499, 3807, 3867, 4133, 6079, 6189, 6593, 7207, 7479, 7523, 8569, 8571
Offset: 1

Views

Author

Zak Seidov, Sep 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 5; a[n_] := a[n] = Block[{k = a[n - 1] + 1 + Mod[a[n - 1], 2], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 48}] (* Robert G. Wilson v *)
  • Python
    from sympy import isprime
    def aupton(terms):
      alst, astr = [5], "5"
      while len(alst) < terms:
        an = alst[-1] + 2
        while an%5 ==0 or not isprime(int(astr + str(an))): an += 2
        alst, astr = alst + [an], astr + str(an)
      return alst
    print(aupton(48)) # Michael S. Branicky, May 09 2021

Extensions

More terms from Robert G. Wilson v, Aug 05 2005

A074341 a(1) = 4; a(n) is smallest number > a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.

Original entry on oeis.org

4, 7, 9, 11, 81, 87, 109, 117, 123, 129, 201, 389, 429, 441, 771, 811, 831, 1037, 1143, 1299, 1569, 1581, 1803, 1837, 1943, 2053, 2171, 2379, 2431, 3201, 3437, 3489, 3723, 3841, 4289, 4801, 5523, 6249, 7083, 7467, 7749, 8171, 9073, 9333, 9683, 9781, 10833
Offset: 1

Views

Author

Zak Seidov, Sep 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 4; a[n_] := a[n] = Block[{k = a[n - 1] + 1 + Mod[a[n - 1], 2], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 47}] (* Robert G. Wilson v *)
    nxt[{j_,a_}]:=Module[{k=a+1},While[!PrimeQ[j*10^IntegerLength[k]+k],k++];{j*10^IntegerLength[k]+k,k}]; NestList[nxt,{4,4},50][[;;,2]] (* Harvey P. Dale, Apr 07 2025 *)

Extensions

More terms from Robert G. Wilson v, Aug 05 2005

A074342 a(1) = 6; a(n) is smallest number > a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.

Original entry on oeis.org

6, 7, 19, 21, 23, 27, 57, 183, 207, 231, 247, 267, 399, 417, 441, 459, 569, 603, 693, 847, 933, 1107, 1149, 1197, 1251, 1581, 1619, 2061, 2137, 2139, 2339, 2643, 2703, 2743, 2847, 2987, 3199, 3447, 3477, 3641, 3919, 4241, 4369, 4599, 4761, 6647, 6739, 6831
Offset: 1

Views

Author

Zak Seidov, Sep 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 6; a[n_] := a[n] = Block[{k = a[n - 1] + 1 + Mod[a[n - 1], 2], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 48}] (* Robert G. Wilson v *)
    nxt[{j_,a_}]:=Module[{k=a+2},While[CompositeQ[j(10^ IntegerLength[ k])+k],k+=2];{j(10^IntegerLength[k])+k,k}]; Join[{6},NestList[ nxt,{67,7},50][[All,2]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 19 2021 *)
  • Python
    from sympy import isprime
    def aupton(terms):
      alst, astr = [6], "6"
      for n in range(2, terms+1):
        an = alst[-1] + 1
        while not isprime(int(astr+str(an))): an += 1
        alst, astr = alst + [an], astr + str(an)
      return alst
    print(aupton(62)) # Michael S. Branicky, Jun 07 2021

Extensions

Corrected and extended by Robert G. Wilson v, Aug 05 2005

A074345 a(1) = 9; a(n) is smallest number > a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.

Original entry on oeis.org

9, 11, 21, 33, 39, 71, 73, 81, 101, 123, 193, 257, 271, 293, 379, 387, 407, 627, 669, 931, 1073, 1179, 1273, 1481, 2587, 2627, 2923, 3063, 3617, 3931, 4073, 4093, 4199, 4491, 4801, 5387, 5647, 5739, 5859, 5979, 6149, 6369, 7527, 8053, 8207, 8647, 8949, 8981
Offset: 1

Views

Author

Zak Seidov, Sep 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 9; a[n_] := a[n] = Block[{k = a[n - 1] + 1 + Mod[a[n - 1], 2], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 48}] (* Robert G. Wilson v *)
    nxt[{j_,a_}]:=Module[{c=a+2},While[CompositeQ[j*10^IntegerLength[c]+c],c+=2];{j*10^IntegerLength[c]+c,c}]; NestList[nxt,{9,9},50][[All,2]] (* Harvey P. Dale, Jan 26 2022 *)

Extensions

Corrected and extended by Robert G. Wilson v, Aug 05 2005

A074346 a(1) = 10; a(n) is smallest number > a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.

Original entry on oeis.org

10, 13, 23, 49, 111, 113, 171, 211, 293, 309, 333, 387, 463, 479, 513, 687, 933, 973, 993, 1329, 1433, 1449, 1551, 2071, 2271, 2423, 2587, 2621, 2659, 2757, 2771, 2911, 3081, 3243, 3279, 3671, 4243, 4247, 4371, 4453, 4511, 5229, 6097, 6177, 6293, 6571
Offset: 1

Views

Author

Zak Seidov, Sep 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 10; a[n_] := a[n] = Block[{k = a[n - 1] + 1 + Mod[a[n - 1], 2], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 46}] (* Robert G. Wilson v, Aug 05 2005 *)
  • Python
    from sympy import isprime
    def aupton(terms):
        alst, astr = [10], "10"
        while len(alst) < terms:
            k = alst[-1] + 1 + (alst[-1]%2)
            while not isprime(int(astr+str(k))): k += 2
            alst.append(k)
            astr += str(k)
        return alst
    print(aupton(46)) # Michael S. Branicky, Oct 13 2021

Extensions

More terms from Robert G. Wilson v, Aug 05 2005

A074339 a(1) = 3; a(n) is smallest number > a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.

Original entry on oeis.org

3, 7, 9, 51, 57, 103, 119, 121, 183, 293, 301, 351, 447, 479, 577, 741, 839, 1051, 1277, 1431, 1633, 1877, 2043, 2251, 2303, 2659, 2937, 3447, 3897, 3969, 4059, 4179, 4371, 4389, 4563, 4841, 4903, 5097, 5103, 5369, 5689, 6621, 6831, 6927, 7479, 9227, 9351
Offset: 1

Views

Author

Zak Seidov, Sep 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 3; a[n_] := a[n] = Block[{k = a[n - 1] + 1 + Mod[a[n - 1], 2], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 47}] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Aug 05 2005

A074343 a(1) = 7; a(n) is smallest number > a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.

Original entry on oeis.org

7, 9, 19, 27, 47, 57, 61, 81, 179, 211, 251, 273, 373, 477, 581, 753, 847, 909, 971, 1399, 1623, 1967, 2139, 2629, 2979, 3297, 3393, 3647, 3793, 4281, 4337, 4411, 4517, 4831, 4979, 5131, 5841, 5897, 5953, 5991, 6287, 6309, 8101, 8147, 8521, 8877, 8969, 9699
Offset: 1

Views

Author

Zak Seidov, Sep 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 7; a[n_] := a[n] = Block[{k = a[n - 1] + 1 + Mod[a[n - 1], 2], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 48}] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Aug 05 2005
Showing 1-10 of 15 results. Next