A074336 a(1) = 1; a(n) is smallest number > a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.
1, 3, 7, 11, 13, 29, 37, 113, 121, 149, 151, 201, 219, 251, 451, 453, 573, 669, 689, 697, 749, 913, 969, 1157, 1269, 1503, 1531, 1809, 2087, 2163, 2179, 2511, 2537, 2599, 2709, 2789, 2929, 3243, 3989, 4033, 4151, 5019, 5389, 5423, 5599, 6179, 6433, 8267
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200 (first 100 terms from Paolo P. Lava)
Crossrefs
Programs
-
Mathematica
a[1] = 1; a[n_] := a[n] = Block[{k = a[n - 1] + 1 + Mod[a[n - 1], 2], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 48}] (* Robert G. Wilson v *) nxt[{j_,a_}]:=Module[{k=a+1},While[!PrimeQ[j*10^IntegerLength[k]+k],k++];{j*10^ IntegerLength[ k]+k,k}]; NestList[nxt,{1,1},50][[;;,2]] (* Harvey P. Dale, Sep 10 2024 *)
Extensions
More terms from Robert G. Wilson v, Aug 05 2005
Comments