A033680 a(1) = 1; a(n) is smallest number >= a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.
1, 1, 3, 11, 13, 29, 39, 49, 83, 141, 247, 273, 291, 347, 373, 401, 441, 567, 571, 651, 903, 957, 1001, 1129, 1401, 1457, 1467, 1561, 1889, 2083, 2169, 2523, 2717, 2743, 3447, 3509, 3711, 4087, 4899, 4983, 5087, 5151, 5263, 5429, 5551, 6017, 7389, 7839
Offset: 1
Links
- Giovanni Resta, Table of n, a(n) for n = 1..800
Crossrefs
Programs
-
Mathematica
a[1] = 1; a[n_] := a[n] = Block[{k = a[n - 1], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 48}] (* Robert G. Wilson v *) nxt[{c_,a_}]:=Module[{x=a},While[!PrimeQ[FromDigits[Join[c,IntegerDigits[ x]]]],x+=2];{Join[c,IntegerDigits[x]],x}]; NestList[nxt,{{1},1},50][[All,2]] (* Harvey P. Dale, Sep 14 2018 *)
Extensions
More terms from Patrick De Geest, May 15 1998
More terms from Robert G. Wilson v, Aug 05 2005
Comments