A074600 a(n) = 2^n + 5^n.
2, 7, 29, 133, 641, 3157, 15689, 78253, 390881, 1953637, 9766649, 48830173, 244144721, 1220711317, 6103532009, 30517610893, 152587956161, 762939584197, 3814697527769, 19073486852413, 95367432689201, 476837160300277
Offset: 0
References
- Miller, Steven J., ed. Benford's Law: Theory and Applications. Princeton University Press, 2015. See page 14.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- D. Suprijanto, I. W. Suwarno, Observation on Sums of Powers of Integers Divisible by 3k-1, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, pp. 2211-2217.
- Index entries for linear recurrences with constant coefficients, signature (7,-10).
Crossrefs
Programs
-
Magma
[2^n + 5^n: n in [0..35]]; // Vincenzo Librandi, Apr 30 2011
-
Mathematica
Table[2^n + 5^n, {n, 0, 25}] LinearRecurrence[{7,-10},{2,7},30] (* Harvey P. Dale, May 09 2019 *)
-
PARI
a(n)=2^n+5^n \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = 5*a(n-1)-3*2^(n-1) = 7*a(n-1)- 10*a(n-2). [Corrected by Zak Seidov, Oct 24 2009]
G.f.: 1/(1-2*x)+1/(1-5*x). E.g.f.: e^(2*x)+e^(5*x). - Mohammad K. Azarian, Jan 02 2009
Comments