A074649
a(0) = 1; for n >= 1, a(n) = sum(binomial(n,k)^3*binomial(n+k,k+1)^2,k = 0..n)/n^2.
Original entry on oeis.org
1, 2, 23, 434, 10897, 327270, 11076235, 408850370, 16119036965, 669177449258, 28960814900899, 1297024187184478, 59777126587203937, 2822927389747980806, 136132927766691327651, 6685542830954666301218, 333618582889745741654221
Offset: 0
-
a[0] = 1; a[n_] := Sum[Binomial[n, k]^3*Binomial[n + k, k + 1]^2, {k, 0, n}]/n^2; Table[a[n], {n, 0, 16}]
A073530
a(n) = (1/n)*Sum_{k=0..n} binomial(n, k)*binomial(n+k, k+1)*binomial(n+k, k) with a(0) = 1.
Original entry on oeis.org
1, 3, 22, 225, 2706, 35861, 507060, 7510005, 115175530, 1815002145, 29231242206, 479251119815, 7975209124260, 134398986236625, 2289535943534920, 39370761619959165, 682603570436824602, 11921040322642855193
Offset: 0
-
A073530:= func< n | n eq 0 select 1 else (1/n)*(&+[Binomial(n,j)* Binomial(n+j,j+1)*Binomial(n+j,j): j in [0..n]]) >;
[A073530(n): n in [0..30]]; // G. C. Greubel, Dec 27 2022
-
p3 := x^3+5*x^2+39*x-2; p4 := x^4+4*x^3+30*x^2-20*x+1;
y := hypergeom([1/12, 5/12], [1], -1728*p3*x^4/p4^3)/p4^(1/4);
a1 := p3/(5*x^2+8*x); a2 := (13*x^3-197*x^2-60*x+16)/(5*x^2+8*x)^2;
ogf := a1*y - Int(a2*y,x) - 89/32;
series(ogf,x=0,20); # Mark van Hoeij, Apr 03 2013
-
Table[ HypergeometricPFQ[{n+1,n+1,-n}, {1,2}, -1], {n,0,20}] (* Robert G. Wilson v *)
-
def A073530(n):
if (n==0): return 1
else: return sum(binomial(n,j)*binomial(n+j,j+1)*binomial(n+j,j) for j in range(n+1))/n
[A073530(n) for n in range(31)] # G. C. Greubel, Dec 27 2022
A075132
a(0)=1; for n > 0, a(n)=sum(binomial(n,k)*binomial(n+k,k+1)*binomial(n+k+1,k),k=0..n)/n.
Original entry on oeis.org
1, 4, 33, 356, 4415, 59690, 855925, 12809620, 198034395, 3140695856, 50845026815, 837207042270, 13982565667915, 236366796137230, 4037392483733629, 69589308151724084, 1209013441314791891
Offset: 0
-
p3 := x^3+5*x^2+39*x-2; p4 := x^4+4*x^3+30*x^2-20*x+1;
y := hypergeom([1/12, 5/12], [1], -1728*p3*x^4/p4^3)/p4^(1/4);
a1 := p3/(5*x+8); a2 := (5*x^3+21*x^2-42*x+178)/(5*x+8)^2;
ogf := (a1*y - Int(a2*y,x) + 1/4)/x;
series(ogf, x=0, 20); # Mark van Hoeij, Apr 05 2013
-
Table[ HypergeometricPFQ[{n + 1, n + 2, -n}, {1, 2}, -1], {n, 0, 16}] (* Robert G. Wilson v *)
A075514
a(0)=1; for n > 0, a(n)=sum(binomial(n,k)*(binomial(n+k,k+1)^2)* binomial(n+k,k),k=0..n).
Original entry on oeis.org
1, 3, 154, 7941, 429036, 24123105, 1399303662, 83176893681, 5041470373624, 310449199290489, 19369215839341710, 1221826010437625703, 77798300823672280164, 4993767938470070592261, 322795606469564782029126
Offset: 0
-
Flatten[{1,Table[Sum[Binomial[n,k]*(Binomial[n+k,k+1]^2)* Binomial[n+k,k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Mar 02 2014 *)
A277060
a(n) = (1/2) * Sum_{k=0..n} (binomial(n,k) * binomial(n+k,k+1))^2 for n >= 0.
Original entry on oeis.org
0, 1, 28, 729, 19376, 529575, 14835780, 424231465, 12338211520, 363931754949, 10862528888300, 327501958094003, 9959845931792784, 305175084350065267, 9412306255856822388, 291982561878565118025, 9104382992541189221120
Offset: 0
Cf. 1/2 * Sum_{k=0..n} (binomial(n,k) * binomial(n+k,k+1))^m:
A050151 (m=1), this sequence (m=2).
-
a := proc(n) option remember; if n = 0 then 0 elif n = 1 then 1 else ( (2*n-1)*(51*n^4-102*n^3+19*n^2+ 32*n-14)*n^2*a(n-1) - n^2*(n-2)*(3*n^2-1)*(n-1)^2*a(n-2) )/( (n-1)^2*(3*n^2-6*n+2)*(n+1)^3 ) end if; end:
seq(a(n), n = 0..20); # Peter Bala, Mar 22 2023
-
a(n)=my(t=n); if(n<2, return(n)); sum(k=1,n, t*=(n-k+1)*(n+k)/k/(k+1); t^2, n^2)/2 \\ Charles R Greathouse IV, Nov 07 2016
Showing 1-5 of 5 results.
Comments