cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074722 a(n) = Sum_{d divides n} phi(n/d)*(-1)^bigomega(d).

Original entry on oeis.org

1, 0, 1, 2, 3, 0, 5, 2, 5, 0, 9, 2, 11, 0, 3, 6, 15, 0, 17, 6, 5, 0, 21, 2, 17, 0, 13, 10, 27, 0, 29, 10, 9, 0, 15, 10, 35, 0, 11, 6, 39, 0, 41, 18, 15, 0, 45, 6, 37, 0, 15, 22, 51, 0, 27, 10, 17, 0, 57, 6, 59, 0, 25, 22, 33, 0, 65, 30, 21, 0, 69, 10, 71, 0, 17, 34, 45, 0, 77, 18, 41, 0
Offset: 1

Views

Author

Vladeta Jovovic, Sep 27 2002

Keywords

Comments

a(n) = 0 if and only if n == 2 (mod 4). - Robert Israel, Jan 04 2017

Crossrefs

Programs

  • Maple
    f:= proc(n) uses numtheory; local d;
       add(phi(n/d)*(-1)^bigomega(d), d=divisors(n))
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 04 2017
  • Mathematica
    f[d_] := EulerPhi[n/d] LiouvilleLambda[d]
    Table[DivisorSum[n, f], {n, 1, 50}] (* Benedict W. J. Irwin, Jul 11 2018 *)
    f[p_, e_] := 2*(-1)^(e + 1)*((-p)^(e + 1) - 1)/(p + 1) - p^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 30 2022 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*(-1)^bigomega(d)); \\ Michel Marcus, Jul 11 2018

Formula

Multiplicative with a(p^e) = 2*(-1)^(e+1)*((-p)^(e+1)-1)/(p+1)-p^e.
Dirichlet g.f.: zeta(2s)*zeta(s-1)/(zeta(s)^2). - Benedict W. J. Irwin, Jul 11 2018
Sum_{k=1..n} a(k) ~ n^2 / 5. - Vaclav Kotesovec, Feb 01 2019
a(n) = Sum_{k=1..n} (-1)^bigomega(gcd(n,k)). - Ilya Gutkovskiy, Feb 22 2020
Möbius transform of A206369: a(n) = Sum_{d|n} A008683(d) * A206369(n/d). - Amiram Eldar, Aug 28 2023