cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A158522 Dirichlet inverse of number of unitary divisors of n (A034444).

Original entry on oeis.org

1, -2, -2, 2, -2, 4, -2, -2, 2, 4, -2, -4, -2, 4, 4, 2, -2, -4, -2, -4, 4, 4, -2, 4, 2, 4, -2, -4, -2, -8, -2, -2, 4, 4, 4, 4, -2, 4, 4, 4, -2, -8, -2, -4, -4, 4, -2, -4, 2, -4, 4, -4, -2, 4, 4, 4, 4, 4, -2, 8, -2, 4, -4, 2, 4, -8, -2, -4, 4, -8, -2, -4, -2, 4, -4, -4, 4, -8, -2, -4, 2, 4, -2
Offset: 1

Views

Author

Jaroslav Krizek, Mar 20 2009

Keywords

Comments

Abs{a(n)} = A034444(n). Examples of Dirichlet convolutions with function a(n), i.e., b(n) = Sum_{d|n} a(d)*c(n/d): a(n) * A034444(n) = A063524(n), a(n) * A000005(n) = A010052(n), a(n) * A000027(n) = A074722(n), a(n) * A000012(n) = A008836(n).
Möbius transform of Liouville's lambda function (A008836). - Wesley Ivan Hurt, Jun 22 2024

Examples

			a(60) = a(2^2*3*5) = [(-1)^2*2]*[(-1)^1*2]*[(-1)^1*2] = 2*(-2)*(-2) = 8.
		

Crossrefs

Programs

  • Mathematica
    Table[LiouvilleLambda[n] 2^PrimeNu[n], {n, 1, 50}] (* Geoffrey Critzer, Mar 07 2015 *)
  • PARI
    for(n=1,20, print1((-1)^bigomega(n)* 2^omega(n), ", ")) \\ G. C. Greubel, May 21 2017

Formula

a(n) = (-1)^A001222(n)*A034444(n) = (-1)^A001222(n)*2^A001221(n), for n >= 2.
Multiplicative with a(p^e) = 2*(-1)^e, p prime, e>0. a(p^0) = 1.
Dirichlet g.f.: zeta(2s)/(zeta(s))^2. - R. J. Mathar, Apr 02 2011
a(n) = Sum_{d|n} (-1)^Omega(d) * mu(n/d). - Wesley Ivan Hurt, Jun 22 2024

A332845 a(n) = (-1)^omega(n) * Sum_{k=1..n} (-1)^omega(n/gcd(n, k)), where omega = A001221.

Original entry on oeis.org

1, 0, 1, 2, 3, 0, 5, 6, 7, 0, 9, 2, 11, 0, 3, 14, 15, 0, 17, 6, 5, 0, 21, 6, 23, 0, 25, 10, 27, 0, 29, 30, 9, 0, 15, 14, 35, 0, 11, 18, 39, 0, 41, 18, 21, 0, 45, 14, 47, 0, 15, 22, 51, 0, 27, 30, 17, 0, 57, 6, 59, 0, 35, 62, 33, 0, 65, 30, 21, 0, 69, 42, 71
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 26 2020

Keywords

Crossrefs

Cf. A000010, A001221, A016825 (positions of 0's), A049060, A058026, A074722, A076479, A307868.

Programs

  • Mathematica
    Table[(-1)^PrimeNu[n] Sum[(-1)^PrimeNu[n/GCD[n, k]], {k, 1, n}], {n, 1, 73}]
    Table[(-1)^PrimeNu[n] Sum[(-1)^PrimeNu[d] EulerPhi[d], {d, Divisors[n]}], {n, 1, 73}]
    f[p_, e_] := p^e - 2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; s = Array[a, 100] (* Amiram Eldar, Nov 01 2022 *)
  • PARI
    a(n) = (-1)^omega(n) * sum(k=1, n, (-1)^omega(n/gcd(n, k))); \\ Michel Marcus, Feb 26 2020
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i,1]^f[i,2] - 2); } \\ Amiram Eldar, Nov 01 2022

Formula

a(n) = (-1)^omega(n) * Sum_{d|n} (-1)^omega(d) * phi(d).
a(p) = p - 2, where p is prime.
From Amiram Eldar, Nov 01 2022: (Start)
Multiplicative with a(p^e) = p^e - 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 - 2/(p*(p+1))) = A307868 / 2 = 0.2358403068... . (End)

A333569 a(n) = Sum_{d|n} (-1)^(bigomega(d) - omega(d)) * phi(n/d).

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 6, 7, 10, 11, 6, 13, 14, 15, 10, 17, 14, 19, 10, 21, 22, 23, 18, 23, 26, 23, 14, 29, 30, 31, 22, 33, 34, 35, 14, 37, 38, 39, 30, 41, 42, 43, 22, 35, 46, 47, 30, 47, 46, 51, 26, 53, 46, 55, 42, 57, 58, 59, 30, 61, 62, 49, 42, 65, 66, 67, 34, 69, 70, 71, 42, 73, 74, 69
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 26 2020

Keywords

Comments

Moebius transform of A327668.

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(PrimeOmega[d] - PrimeNu[d]) EulerPhi[n/d], {d, Divisors[n]}], {n, 1, 75}]
    Table[Sum[(-1)^(PrimeOmega[GCD[n, k]] - PrimeNu[GCD[n, k]]), {k, 1, n}], {n, 1, 75}]
    f[p_, e_] := If[e > 1, (p^e*(p^2+p-2) - 2*(-1)^e*p)/(p*(p + 1)), p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100] (* Amiram Eldar, Nov 12 2022 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(bigomega(d) - omega(d)) * eulerphi(n/d)); \\ Michel Marcus, Mar 27 2020

Formula

a(n) = Sum_{k=1..n} (-1)^(bigomega(gcd(n,k)) - omega(gcd(n,k))).
a(n) = Sum_{d|n} mu(n/d) * A327668(d).
From Amiram Eldar, Nov 12 2022: (Start)
Multiplicative with a(p) = p, and a(p^e) = (p^e*(p^2+p-2) - 2*(-1)^e*p)/(p*(p+1)) for e>1.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/5) * Product_{p prime} (1 + 2/p^2) = 0.4381740171... . (End)
Showing 1-3 of 3 results.