A074724 Highest power of 3 dividing F(4n) where F(k) is the k-th Fibonacci number.
3, 3, 9, 3, 3, 9, 3, 3, 27, 3, 3, 9, 3, 3, 9, 3, 3, 27, 3, 3, 9, 3, 3, 9, 3, 3, 81, 3, 3, 9, 3, 3, 9, 3, 3, 27, 3, 3, 9, 3, 3, 9, 3, 3, 27, 3, 3, 9, 3, 3, 9, 3, 3, 81, 3, 3, 9, 3, 3, 9, 3, 3, 27, 3, 3, 9, 3, 3, 9, 3, 3, 27, 3, 3, 9, 3, 3, 9, 3, 3, 243, 3, 3, 9, 3, 3, 9, 3, 3, 27, 3, 3, 9, 3, 3, 9, 3, 3
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[3^IntegerExponent[Fibonacci[4n],3],{n,100}] (* Harvey P. Dale, Jun 03 2012 *)
-
PARI
a(n) = 3^valuation(fibonacci(4*n), 3); \\ Michel Marcus, May 13 2022
Formula
If k == 1 or 2 (mod 3) then a(3^m*k) = 3^(m+1) for m>=0.
a(n) = 3^A051064(n) (conjectured). - Michel Marcus, May 17 2022
Conjecture: a(n) = (sigma(3*n) - sigma(n))/(sigma(3*n) - 3*sigma(n)), where sigma(n) = A000203(n). Equivalently, a(n) = A088838(n) - A074724(n). - Peter Bala, Jun 10 2022
Comments