A074736 Goedel encoding of the prime factors of n, in increasing order and repeated according to multiplicity.
1, 4, 8, 36, 32, 108, 128, 900, 216, 972, 2048, 4500, 8192, 8748, 1944, 44100, 131072, 13500, 524288, 112500, 17496, 708588, 8388608, 308700, 7776, 6377292, 27000, 2812500, 536870912, 337500, 2147483648, 5336100, 1417176, 516560652, 69984, 1543500, 137438953472
Offset: 1
Keywords
Examples
The prime factors of 12 in increasing order and repeated according to multiplicity are 2, 2, 3. Hence a(12) = 2^2 * 3^2 * 5^3 = 4500.
References
- K. Gödel, "On Formally Undecidable Propositions of Principia Mathematica and Related Systems", Dover Publications, 1992.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..3322
- Wikipedia, Gödel's encoding
Programs
-
Maple
a:= n-> (l-> mul(ithprime(i)^l[i], i=1..nops(l)))( sort(map(i-> i[1]$i[2], ifactors(n)[2]))): seq(a(n), n=1..40);
-
Mathematica
Array[Times @@ MapIndexed[Prime[First[#2]]^#1 &, Apply[Join, ConstantArray[#1, #2] & @@@ FactorInteger[#]]] &, 34, 2] (* Michael De Vlieger, May 04 2020 *)
-
PARI
for(n=2,50,m=factor(n):s=1:c=1:for(k=1,matsize(m)[1], for(l=1,m[k,2],s=s*prime(c)^m[k,1]:c=c+1)):print1(s",")) [Does not compile. - Robert C. Lyons, Nov 04 2024]
-
Python
from math import prod from sympy import prime, factorint def A074736(n): return prod(prime(i)**j for i, j in enumerate(factorint(n,multiple=True),1)) # Chai Wah Wu, Nov 04 2024
Formula
a(n) = prime(1)^p_1 * prime(2)^p_2 * ... * prime(k)^p_k, where p_1 <= ... <= p_k are the prime factors of n, repeated according to multiplicity.
Extensions
More terms from Ralf Stephan, Mar 22 2003
a(1)=1 prepended by Alois P. Heinz, Nov 04 2024
Comments