cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074736 Goedel encoding of the prime factors of n, in increasing order and repeated according to multiplicity.

Original entry on oeis.org

1, 4, 8, 36, 32, 108, 128, 900, 216, 972, 2048, 4500, 8192, 8748, 1944, 44100, 131072, 13500, 524288, 112500, 17496, 708588, 8388608, 308700, 7776, 6377292, 27000, 2812500, 536870912, 337500, 2147483648, 5336100, 1417176, 516560652, 69984, 1543500, 137438953472
Offset: 1

Views

Author

Joseph L. Pe, Sep 28 2002

Keywords

Comments

For irregular triangle T(n,k) at A027746, a(n) = Product_{1..A001222(n)} pi(k)^T(n,k). - Michael De Vlieger, May 04 2020.

Examples

			The prime factors of 12 in increasing order and repeated according to multiplicity are 2, 2, 3. Hence a(12) = 2^2 * 3^2 * 5^3 = 4500.
		

References

  • K. Gödel, "On Formally Undecidable Propositions of Principia Mathematica and Related Systems", Dover Publications, 1992.

Crossrefs

Programs

  • Maple
    a:= n-> (l-> mul(ithprime(i)^l[i], i=1..nops(l)))(
            sort(map(i-> i[1]$i[2], ifactors(n)[2]))):
    seq(a(n), n=1..40);
  • Mathematica
    Array[Times @@ MapIndexed[Prime[First[#2]]^#1 &, Apply[Join, ConstantArray[#1, #2] & @@@ FactorInteger[#]]] &, 34, 2] (* Michael De Vlieger, May 04 2020 *)
  • PARI
    for(n=2,50,m=factor(n):s=1:c=1:for(k=1,matsize(m)[1], for(l=1,m[k,2],s=s*prime(c)^m[k,1]:c=c+1)):print1(s",")) [Does not compile. - Robert C. Lyons, Nov 04 2024]
    
  • Python
    from math import prod
    from sympy import prime, factorint
    def A074736(n): return prod(prime(i)**j for i, j in enumerate(factorint(n,multiple=True),1)) # Chai Wah Wu, Nov 04 2024

Formula

a(n) = prime(1)^p_1 * prime(2)^p_2 * ... * prime(k)^p_k, where p_1 <= ... <= p_k are the prime factors of n, repeated according to multiplicity.

Extensions

More terms from Ralf Stephan, Mar 22 2003
a(1)=1 prepended by Alois P. Heinz, Nov 04 2024