cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074823 a(n) = 2^omega(n)*mu(n)^2.

Original entry on oeis.org

1, 2, 2, 0, 2, 4, 2, 0, 0, 4, 2, 0, 2, 4, 4, 0, 2, 0, 2, 0, 4, 4, 2, 0, 0, 4, 0, 0, 2, 8, 2, 0, 4, 4, 4, 0, 2, 4, 4, 0, 2, 8, 2, 0, 0, 4, 2, 0, 0, 0, 4, 0, 2, 0, 4, 0, 4, 4, 2, 0, 2, 4, 0, 0, 4, 8, 2, 0, 4, 8, 2, 0, 2, 4, 0, 0, 4, 8, 2, 0, 0, 4, 2, 0, 4, 4, 4, 0, 2, 0, 4, 0, 4, 4, 4, 0, 2, 0, 0, 0, 2, 8, 2, 0, 8
Offset: 1

Views

Author

Benoit Cloitre, Sep 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[MoebiusMu[n]^2 * 2^PrimeNu[n], {n, 1, 100}] (* Vaclav Kotesovec, Aug 20 2021 *)
    f[p_, e_] :=If[e==1, 2, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jun 26 2022 *)
  • PARI
    a(n) = 2^omega(n)*moebius(n)^2; \\ Michel Marcus, Jul 23 2017
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 2*X))[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 3*X^2 + 2*X^3)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021
  • Scheme
    (define (A074823 n) (if (= 1 n) n (* (if (= 1 (A067029 n)) 2 0) (A074823 (A028234 n))))) ;; Antti Karttunen, Jul 23 2017
    

Formula

Sum_{k=1..n} a(k) = A069201(n).
Multiplicative with a(p)=2, a(p^e)=0, e > 1.
a(n) = A034444(n)*A008966(n). - R. J. Mathar, Apr 15 2011
Sum_{n>0} a(n)/n^s = Product_{p prime} (1 + 2p^(-s)). - Ralf Stephan, Jul 07 2013
a(n) = abs(A226177(n)). - Antti Karttunen, Jul 23 2017
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)). - Vaclav Kotesovec, Aug 20 2021

Extensions

Additional comments from Vladeta Jovovic, Dec 30 2002