A074847 Sum of 4-infinitary divisors of n: if n=Product p(i)^r(i) and d=Product p(i)^s(i), each s(i) has a digit a<=b in its 4-ary expansion everywhere that the corresponding r(i) has a digit b, then d is a 4-infinitary-divisor of n.
1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 17, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 51, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 68, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 119, 84, 144, 68, 126, 96
Offset: 1
Examples
2^4*3 is a 4-infinitary-divisor of 2^5*3^2 because 2^4*3 = 2^10*3^1 and 2^5*3^2 = 2^11*3^2 in 4-ary expanded power. All corresponding digits satisfy the condition. 1<=1, 0<=1, 1<=2.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
following Bower and Harris, cf. A049418: a074847 1 = 1 a074847 n = product $ zipWith f (a027748_row n) (a124010_row n) where f p e = product $ zipWith div (map (subtract 1 . (p ^)) $ zipWith (*) a000302_list $ map (+ 1) $ a030386_row e) (map (subtract 1 . (p ^)) a000302_list) -- Reinhard Zumkeller, Sep 18 2015
-
Maple
A074847 := proc(n) option remember; ifa := ifactors(n)[2] ; a := 1 ; if nops(ifa) = 1 then p := op(1,op(1,ifa)) ; e := op(2,op(1,ifa)) ; d := convert(e,base,4) ; for k from 0 to nops(d)-1 do a := a*(p^((1+op(k+1,d))*4^k)-1)/(p^(4^k)-1) ; end do: else for d in ifa do a := a*procname( op(1,d)^op(2,d)) ; end do: return a; end if; end proc: seq(A074847(n),n=1..100) ; # R. J. Mathar, Oct 06 2010
-
Mathematica
f[p_, e_] := Module[{d = IntegerDigits[e, 4]}, m = Length[d]; Product[(p^((d[[j]] + 1)*4^(m - j)) - 1)/(p^(4^(m - j)) - 1), {j, 1, m}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 09 2020 *)
Formula
Multiplicative. If e = sum_{k >= 0} d_k 4^k (base 4 representation), then a(p^e) = prod_{k >= 0} (p^(4^k*{d_k+1}) - 1)/(p^(4^k) - 1). - Christian G. Bower and Mitch Harris, May 20 2005
Extensions
More terms from R. J. Mathar, Oct 06 2010
Comments