cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074881 Triangle T(n,k) giving number of labeled cyclic subgroups of order k in symmetric group S_n, n >= 1, 1 <= k <= g(n), where g(n) = A000793(n) is Landau's function.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 4, 3, 1, 25, 10, 15, 6, 10, 1, 75, 40, 90, 36, 120, 1, 231, 175, 420, 126, 735, 120, 126, 105, 1, 763, 616, 2730, 336, 5320, 960, 1260, 1008, 840, 336, 1, 2619, 2884, 15498, 756, 41580, 4320, 11340, 6720, 6804, 7560, 4320, 3024, 2268
Offset: 1

Views

Author

Vladeta Jovovic, Sep 30 2002

Keywords

Comments

A057731 contains zeros. This sequence contains only positive values of A057731(n,k)/A000010(k). - Alois P. Heinz, Feb 16 2013

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,   1;
  1,   9,   4,   3;
  1,  25,  10,  15,   6,  10;
  1,  75,  40,  90,  36, 120;
  1, 231, 175, 420, 126, 735, 120, 126, 105;
  ...
		

Crossrefs

Row sums give A051625.

Programs

  • Mathematica
    nmax = 10;
    T[n_, k_] := n! SeriesCoefficient[O[x]^(n+1) + Sum[MoebiusMu[k/i]*Exp[ Sum[x^j/j, {j, Divisors[i]}]], {i, Divisors[k]}], {x, 0, n}]/ EulerPhi[k];
    Table[DeleteCases[Table[T[n, k], {k, 1, 2 nmax}], 0], {n, 1, nmax}] // Flatten (* Jean-François Alcover, Sep 16 2019, after Andrew Howroyd *)
  • PARI
    T(n,k)={n!*polcoeff(sumdiv(k, i, moebius(k/i)*exp(sumdiv(i, j, x^j/j) + O(x*x^n))), n)/eulerphi(k)} \\ Andrew Howroyd, Jul 02 2018

Formula

T(n,k) = A057731(n,k)/A000010(k).