cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A051625 Number of "labeled" cyclic subgroups of symmetric group S_n.

Original entry on oeis.org

1, 2, 5, 17, 67, 362, 2039, 14170, 109694, 976412, 8921002, 101134244, 1104940280, 13914013024, 191754490412, 2824047042632, 41304021782824, 708492417746000, 11629404776897384, 222093818836736752, 4351196253952132832, 88481681599705382144, 1781763397966126421200
Offset: 1

Views

Author

Keywords

Comments

Number of unordered lists of powers of permutation of length n (equivalent to the definition). - Olivier Gérard, Jul 04 2011
Number of subgroups of S_n with different permutations generated by single permutation (see Mathematica procedure). - Artur Jasinski, Oct 27 2011

Examples

			The 5 cyclic subgroups of symmetric group S_3 are: {Id}, the 3 subgroups {Id,(a,b)}, {Id,(b,c)}, {Id,(a,c)} and the Alternating group A_3: <Id, (a,b,c), (a,c,b)>.
The 17 cyclic subgroups of symmetric group S_4 are: {Id}, the 6 subgroups of type <(a,b)>, the 3 subgroups of type <(a,b)(c,d)>, the 4 subgroups of type <(a,b,c)> and the 3 subgroups of type <(a,b,c,d)>. - _Bernard Schott_, Feb 25 2019
		

References

  • V. Jovovic, Some combinatorial characteristics of symmetric and alternating groups (in Russian), Belgrade, 1980, unpublished.

Crossrefs

Row sums of A074881.

Programs

  • Maple
    parts:= proc(n,k) option remember;
       if k = 1 then return {[n]} fi;
       `union`(seq(map(t -> [op(t),j], procname(n-j*k,k-1)), j=0..floor(n/k)))
    end proc:
    F:= n -> add(n!/mul(p[k]!*k^p[k],k=1..nops(p)) / numtheory:-phi(ilcm(op(select(t -> p[t]<>0, [$1..n])))), p = parts(n,n)):
    seq(F(n),n=1..30); # Robert Israel, Oct 04 2015
  • Mathematica
    cc = {}; Do[aa = {}; kk = Table[n, {n, 1, ord}]; pp = Permutations[kk]; Do[per17 = {}; AppendTo[per17, pp[[p]]]; run = 0; ile = Length[per17]; min = 1; max = ile; While[ile < ord!, run = run + 1; if = False; Do[Do[vec0 = Table[0, {n, 1, ord}]; Do[vec0[[per17[[k]][[n]]]] = per17[[m]][[n]], {n, 1, ord}]; bp = vec0; If[Position[per17, bp] == {}, ile = ile + 1; Print[ile]; if = True; AppendTo[per17, bp]]; vec0 = Table[0, {n, 1, ord}]; Do[vec0[[per17[[m]][[n]]]] = per17[[k]][[n]], {n, 1, ord}]; bl = vec0; If[Position[per17, bl] == {}, ile = ile + 1; if = True; AppendTo[per17, bl]]; If[ile == ord!, Break[]], {k, 1, max}], {m, min, max}]; If[if == False, Break[], min = max + 1; max = ile]]; AppendTo[aa, Sort[per17]], {p, 1, ord!}]; AppendTo[cc, Length[Union[aa]]], {ord, 1, 7}]; cc (* Artur Jasinski, Oct 27 2011 *)
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]/EulerPhi[LCM @@ p], {p, IntegerPartitions[n]}]; s];
    Array[a, 23] (* Jean-François Alcover, Feb 25 2019, after Andrew Howroyd *);
    content[li_List] := Table[Count[li, i], {i, Tr[li]}]; Table[Tr[(n!/(Times @@ (Range[Tr[#1]]^content[#1]*content[#1]!)*EulerPhi[LCM @@ Flatten[Position[content[#1], ?Positive]]]) & ) /@ IntegerPartitions[n] ], {n, 23}] (* _Wouter Meeussen, Jan 06 2021 *);
  • PARI
    \\ permcount is number of permutations of given type.
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    a(n)={my(s=0); forpart(p=n, s+=permcount(p)/eulerphi(lcm(Vec(p)))); s} \\ Andrew Howroyd, Jul 03 2018

Formula

a(n) = Sum_{pi} n!/(k_1!*1^k_1*k_2!*2^k_2*...*k_n!*n^k_n*phi(lcm{i:k_i != 0})), where pi runs through all partitions k_1+2*k_2+...+n*k_n=n and phi is Euler's function.

A181949 Weighted sum of all cyclic subgroups of the Symmetric Group.

Original entry on oeis.org

1, 3, 10, 43, 231, 1531, 11068, 89895, 820543, 8484871, 95647476, 1186289083, 15648402355, 221728356123, 3354790995676, 53999879550991, 936289020367263, 17163114699673615, 328827078340587148, 6630244432204704771, 139769193881466850051, 3092293682224076627683
Offset: 1

Views

Author

Olivier Gérard, Apr 03 2012

Keywords

Comments

Sum of the orders of all cyclic subgroups of the Sym_n.
The identity permutation is counted for each subgroup, i.e. A051625(n) times.
Each permutation is counted several times according to its conjugacy class.

Examples

			a(4) = 1*1 + 2*3 + 2*6 + 3*4 + 4*3 = 1+6+12+12+12 = 43.
		

Crossrefs

Formula

a(n) = Sum_{k=1..A000793(n)} k*A074881(n, k). - Andrew Howroyd, Jul 02 2018

Extensions

a(9)-a(22) from Andrew Howroyd, Jul 02 2018

A303728 Triangle read by rows: T(n,k) is the number of labeled cyclic subgroups of order k in the alternating group A_n, 1 <= k <= A051593(n).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 3, 4, 1, 15, 10, 0, 6, 1, 45, 40, 45, 36, 1, 105, 175, 315, 126, 105, 120, 1, 315, 616, 1890, 336, 2520, 960, 0, 0, 0, 0, 0, 0, 0, 336, 1, 1323, 2884, 9450, 756, 18900, 4320, 0, 6720, 2268, 0, 3780, 0, 0, 3024, 1, 5355, 15520, 47250, 19656
Offset: 1

Views

Author

Andrew Howroyd, Jul 03 2018

Keywords

Examples

			Triangle begins:
1;
1;
1, 0, 1;
1, 3, 4;
1, 15, 10, 0, 6;
1, 45, 40, 45, 36;
1, 105, 175, 315, 126, 105, 120;
1, 315, 616, 1890, 336, 2520, 960, 0, 0, 0, 0, 0, 0, 0, 336;
...
		

Crossrefs

Row sums are A051636.

Programs

  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    G(n)={my(s=0); forpart(p=n, if(sum(i=1,#p,p[i]-1)%2==0, my(d=lcm(Vec(p))); s+=x^d*permcount(p)/eulerphi(d))); s}
    for(n=1, 10, print(Vecrev(G(n)/x)))
Showing 1-3 of 3 results.