cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074940 Numbers having at least one 2 in their ternary representation.

Original entry on oeis.org

2, 5, 6, 7, 8, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 32, 33, 34, 35, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 83, 86, 87, 88, 89, 92
Offset: 1

Views

Author

Benoit Cloitre and Reinhard Zumkeller, Oct 04 2002; revised Dec 03 2003

Keywords

Comments

Also, numbers m such that 3 divides C(2m,m).
Also, numbers m such that the central trinomial coefficient A002426(m) == 0 (mod 3). - Emeric Deutsch and Bruce E. Sagan, Dec 04 2003
Also, numbers m such that A092255(m) == 0 (mod 3). - Benoit Cloitre, Mar 22 2004
Also, numbers m such that the coefficient of x^m equals 0 in Product_{k>=0} (1-x^(3^k)). - N. J. A. Sloane, Jun 01 2010

Examples

			12 is not in the sequence since it is 110_3, but 11 is in the sequence since it is 102_3. - _Michael B. Porter_, Jun 30 2016
		

Crossrefs

Complement of A005836.
A039966(a(n)) = 0.

Programs

  • Haskell
    a074940 n = a074940_list !! (n-1)
    a074940_list = filter ((== 0) . a039966) [0..]
    -- Reinhard Zumkeller, Jun 06 2012, Sep 29 2011
    
  • Mathematica
    Select[Range@ 120, MemberQ[IntegerDigits[#, 3], 2] &] (* or *)
    Select[Range@ 120, Divisible[Binomial[2 #, #], 3] &] (* Michael De Vlieger, Jun 29 2016 *)
    Select[Range[100],DigitCount[#,3,2]>0&] (* Harvey P. Dale, Aug 25 2019 *)
  • PARI
    is(n)=while(n,if(n%3==2,return(1));n\=3);0 \\ Charles R Greathouse IV, Aug 21 2011
    
  • Python
    from gmpy2 import digits
    def A074940(n):
        def f(x):
            s = digits(x,3)
            for i in range(l:=len(s)):
                if s[i]>'1':
                    break
            else:
                return n+int(s,2)
            return n+int(s[:i]+'1'*(l-i),2)
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Oct 29 2024

Formula

a(n) = n + O(n^0.631). - Charles R Greathouse IV, Aug 21 2011

Extensions

More terms from Emeric Deutsch and Bruce E. Sagan, Dec 04 2003