cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074985 Squares of semiprimes (A001358).

Original entry on oeis.org

16, 36, 81, 100, 196, 225, 441, 484, 625, 676, 1089, 1156, 1225, 1444, 1521, 2116, 2401, 2601, 3025, 3249, 3364, 3844, 4225, 4761, 5476, 5929, 6724, 7225, 7396, 7569, 8281, 8649, 8836, 9025, 11236, 12321, 13225, 13924, 14161, 14641, 14884, 15129
Offset: 1

Views

Author

Jani Melik, Oct 07 2002

Keywords

Comments

Disjoint union of 4th powers of primes, A030514, and squares of squarefree semiprimes, A085986. - M. F. Hasler, Nov 12 2021

Examples

			4 is divisible by 2 (twice) and 4*4 = 16.
6 is divisible by exactly 2 and 3 and 6*6 = 36.
		

Crossrefs

Cf. A030514 (4th powers of primes), A085986 (squares of squarefree semiprimes).

Programs

  • Haskell
    a074985 = a000290 . a001358  -- Reinhard Zumkeller, Aug 02 2012
    
  • Maple
    readlib(issqr): ts_kv_sp := proc(n); if (numtheory[bigomega](n)=4 and issqr(n)='true') then RETURN(n); fi; end: seq(ts_kv_sp(i), i=1..50000);
  • Mathematica
    Select[Range[200],PrimeOmega[#]==2&]^2 (* Harvey P. Dale, Oct 03 2011 *)
  • PARI
    is(n)=if(issquare(n,&n), isprimepower(n)==2 || factor(n)[,2]==[1,1]~, 0) \\ Charles R Greathouse IV, Oct 16 2015
    
  • PARI
    list(lim)=lim=sqrtint(lim\1); my(v=List()); forprime(p=2, sqrtint(lim), forprime(q=p, lim\p, listput(v, (p*q)^2))); Set(v) \\ Charles R Greathouse IV, Nov 13 2021

Formula

a(n) ~ (n log n/log log n)^2. - Charles R Greathouse IV, Oct 16 2015
Sum_{n>=1} 1/a(n) = (P(2)^2 + P(4))/2 = (A085548^2 + A085964)/2 = 0.1407604343..., where P is the prime zeta function. - Amiram Eldar, Oct 30 2020