cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A085155 Powers of semiprimes.

Original entry on oeis.org

1, 4, 6, 9, 10, 14, 15, 16, 21, 22, 25, 26, 33, 34, 35, 36, 38, 39, 46, 49, 51, 55, 57, 58, 62, 64, 65, 69, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 21 2003

Keywords

Comments

Numbers of form A001358(i)^j;
m>1 is a term iff A067029(m)=A071178(m) and (A001221(m)=2 or A067029(m) is even).

Crossrefs

Semiprime analog of A000961 = prime powers.

Programs

  • Mathematica
    Select[Range@ 166, Function[n, Or[n == 1, And[Length@ # == 1, EvenQ@ First@ #], And[Length@ # == 2, SameQ @@ #]] &[FactorInteger[n][[All, -1]]]]] (* Michael De Vlieger, Mar 04 2017 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); #f==0 || (#f==2 && f[1]==f[2]) || (#f==1 && f[1]%2==0) \\ Charles R Greathouse IV, Oct 19 2015

Formula

{1} UNION {A001358 semiprimes} UNION {A074985 squares of semiprimes} UNION {cubes of semiprimes} UNION {4th powers of semiprimes} UNION ... - Jonathan Vos Post, Sep 06 2006

A177492 Products of squares of 2 or more distinct primes.

Original entry on oeis.org

36, 100, 196, 225, 441, 484, 676, 900, 1089, 1156, 1225, 1444, 1521, 1764, 2116, 2601, 3025, 3249, 3364, 3844, 4225, 4356, 4761, 4900, 5476, 5929, 6084, 6724, 7225, 7396, 7569, 8281, 8649, 8836, 9025, 10404, 11025, 11236, 12100, 12321, 12996, 13225, 13924
Offset: 1

Views

Author

Keywords

Examples

			36=2^2*3^2, 100=2^2*5*2, 196=2^2*7^2,..900=2^2*3^2*5^2,..
		

Crossrefs

Programs

  • Maple
    q:= n-> not isprime(n) and numtheory[issqrfree](n):
    map(x-> x^2, select(q, [$4..120]))[];  # Alois P. Heinz, Aug 02 2024
  • Mathematica
    f1[n_]:=Length[Last/@FactorInteger[n]]; f2[n_]:=Union[Last/@FactorInteger[n]]; lst={};Do[If[f1[n]>1&&f2[n]=={2},AppendTo[lst,n]],{n,0,8!}];lst
    Reap[Do[{p, e} = Transpose[FactorInteger[n]]; If[Length[p]>1 && Union[e]=={2}, Sow[n]], {n, 13225}]][[2, 1]]
    (* Second program *)
    Select[Range[120], And[CompositeQ[#], SquareFreeQ[#]] &]^2 (* Michael De Vlieger, Aug 17 2023 *)
  • Python
    from math import isqrt
    from sympy import primepi, mobius
    def A177492(n):
        def f(x): return n+1+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n+1, f(n+1)
        while m != k:
            m, k = k, f(k)
        return m**2 # Chai Wah Wu, Aug 02 2024

Formula

a(n) = A120944(n)^2. - R. J. Mathar, Dec 06 2010

Extensions

Definition corrected by R. J. Mathar, Dec 06 2010

A173082 Semiprimes q such that q^2+2 and q^2-2 are also semiprimes.

Original entry on oeis.org

6, 51, 65, 115, 133, 141, 159, 187, 201, 209, 213, 287, 291, 295, 327, 339, 361, 407, 411, 413, 471, 493, 511, 519, 537, 559, 579, 597, 633, 649, 687, 695, 723, 799, 813, 831, 835, 871, 917, 939, 1007, 1041, 1047, 1079, 1135, 1167, 1189, 1195, 1199, 1227
Offset: 1

Views

Author

Keywords

Examples

			6^2-2=34 = 2*17 and 6^2+2=38 = 2*19 are semiprimes derived from the semiprime q=6, so q=6 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}||Last/@FactorInteger[n]=={2}; lst={}; Do[If[f[n], a=n^2-2;b=n^2+2;If[f[a]&&f[b],AppendTo[lst,n]]],{n,8!}]; lst

Formula

{A001358(j): A074985(j)-2 in A001358 and A074985(j)+2 in A001358}. [R. J. Mathar, Mar 11 2010]

Extensions

Definition rephrased - R. J. Mathar, Mar 11 2010

A173083 Semiprimes q such that q^2+3 and q^2-3 are also semiprimes.

Original entry on oeis.org

6, 226, 262, 302, 314, 334, 346, 382, 466, 482, 514, 538, 562, 734, 778, 842, 866, 886, 898, 926, 974, 1006, 1046, 1282, 1306, 1318, 1322, 1438, 1466, 1478, 1574, 1622, 1774, 1822, 1838, 1858, 1894, 1994, 2302, 2342, 2446, 2518, 2578, 2582, 2602, 2638
Offset: 1

Views

Author

Keywords

Examples

			6^2-3=33 = 3*11 and 6^2+3=39 = 3*13 are semiprimes derived from q=6, so q=6 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}||Last/@FactorInteger[n]=={2}; lst={}; Do[If[f[n], a=n^2-3;b=n^2+3;If[f[a]&&f[b],AppendTo[lst,n]]],{n,8!}]; lst

Formula

{A001358(j): A074985(j)-3 in A001358 and A074985(j)+3 in A001358}. [R. J. Mathar, Mar 11 2010]

Extensions

Definition rephrased - R. J. Mathar, Mar 11 2010

A128303 Indices of squares (of semiprimes) in the 4-almost primes.

Original entry on oeis.org

1, 3, 8, 12, 24, 29, 59, 66, 90, 97, 162, 172, 187, 224, 234, 335, 385, 412, 489, 531, 551, 630, 692, 791, 921, 997, 1128, 1223, 1256, 1285, 1420, 1484, 1518, 1549, 1937, 2146, 2315, 2441, 2483, 2556, 2606, 2651, 2915, 3124, 3175, 3542, 3587, 3645, 3751, 3800
Offset: 1

Views

Author

Rick L. Shepherd, Mar 04 2007

Keywords

Examples

			a(5) = 24 as 196 = 14^2 = semiprime(5)^2, the 5th square in the 4-almost primes, is the 24th 4-almost prime.
		

Crossrefs

Programs

Formula

A014613(a(n)) = A074985(n) = A001358(n)^2.

A108655 Primes that are sums of the squares of two semiprimes.

Original entry on oeis.org

97, 181, 241, 277, 421, 457, 541, 641, 661, 709, 757, 821, 1109, 1117, 1237, 1301, 1381, 1597, 1621, 1669, 1709, 1901, 2069, 2341, 2381, 2417, 2437, 2557, 2617, 2677, 2741, 2797, 3041, 3061, 3221, 3557, 3637, 3701, 3733, 3989, 4241, 4261, 4421, 4517
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 07 2005

Keywords

Comments

Subsequence of A002144.
a(n) = A074985(i) + A074985(j) for appropriate i and j.

Examples

			A000040(733) = 5557 = 81 + 5476 = (3*3)^2 + (2*37)^2 =
A001358(3)^2 + A001358(25)^2 = A074985(3) + A074985(25),
therefore 5557 is a term.
		

Crossrefs

Programs

  • Haskell
    a108655 n = a108655_list !! (n-1)
    a108655_list = filter f a000040_list where
       f p = any (> 0) $ map (a064911 . a037213 . (p -)) $
                             takeWhile (< p) a074985_list
    -- Reinhard Zumkeller, Aug 09 2012

A154928 Decimal expansion of Sum_{q in A001358} log(q)/q^2 over the semiprimes q = 4,6,9,...

Original entry on oeis.org

0, 2, 8, 3, 6, 0, 6, 8, 1, 5, 4, 0, 7, 9, 8, 0, 6, 5, 2, 2, 2, 4, 2, 5, 8, 2, 2, 2, 5, 4, 8, 2, 7, 8, 3, 3, 6, 0, 7, 9, 3, 5, 0, 5, 7, 8, 2, 3, 7, 8, 1, 4, 0, 1, 3, 4, 1, 1, 1, 1
Offset: 0

Views

Author

R. J. Mathar, Jan 17 2009

Keywords

Comments

Semiprime analog of A136271. The absolute value of the first derivative of the semiprime zeta function at 2.

Examples

			Equals 0.0283606815... = log(4)/16 + log(6)/36 + log(9)/81 + ....
		

Formula

Equals Sum_{j>=1} log(A001358(j))/A074985(j).

Extensions

Missing zero inserted. Artur Jasinski, Jul 29 2025

A217736 Sum of first n squares of semiprimes.

Original entry on oeis.org

16, 52, 133, 233, 429, 654, 1095, 1579, 2204, 2880, 3969, 5125, 6350, 7794, 9315, 11431, 13832, 16433, 19458, 22707, 26071, 29915, 34140, 38901, 44377, 50306, 57030, 64255, 71651, 79220, 87501, 96150, 104986, 114011, 125247, 137568, 150793, 164717, 178878
Offset: 1

Views

Author

Keywords

Comments

There are 68 such numbers less than one million; a(68) = 988849.

Examples

			a(3) = 4^2 + 6^2 + 9^2 = 133.
		

Crossrefs

Cf. A062198. Equals sum(A001358^2), and sum(A074985).

Programs

  • Mathematica
    Accumulate[Select[Range[200],PrimeOmega[#]==2&]^2] (* Harvey P. Dale, Mar 13 2018 *)

A349241 Numbers N = pqrs such that |pqr - s| > |ps - qr|, where p <= q <= r <= s are the 4 prime factors of N.

Original entry on oeis.org

16, 24, 36, 54, 60, 81, 90, 100, 126, 135, 140, 150, 189, 196, 210, 225, 250, 294, 308, 315, 330, 350, 364, 375, 390, 441, 462, 484, 490, 495, 525, 546, 550, 572, 585, 625, 650, 676, 686, 693, 714, 726, 735, 748, 770, 798, 819, 825, 836, 850, 858, 875, 884, 910, 950, 975, 988
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2021

Keywords

Comments

The set A014613 of numbers n with bigomega(n) = A001222(n) = 4, can be partitioned in these here and their complement A349242. It was suggested (cf. math-fun post in LINKS) to call these here the "trans"- and the others the "cis"-type.
These here include squares of semiprimes (A074985), and in particular 4th powers of primes (A030514), for which |ps - qr| = 0.
Within the 4-almost primes below 10^k, k = 2, 3, ...,8, we have (8, 57, 497, 4960, 49228, 491397, 4869917, ...) of trans type, and more than twice (or even three times) as many of cis type.

Examples

			16 = 2^4 = u*v with u = v = 2*2 closer (equal) than u = 2*2*2, v = 2 (difference 8 - 2 = 6).
24 = 2^3*3 = u*v with u = 2*2, v = 2*3 closer (distance 6 - 4 = 2) than u = 2*2*2, v = 3 (distance 8 - 3 = 5).
36 = 2^2*3^2 = u*v with u = v = 2*3 closer (equal) than u = 2^2*3, v = 3 (difference 12 - 3 = 9).
The 4-almost prime 40 = 2^3*5 is not in this sequence because the factorization 40 = u*v with u = 2^3, v = 5 has closer factors (distance 8 - 5 = 3) than u = 2*2, v = 2*5 (distance 10 - 4 = 6).
		

Crossrefs

Programs

  • PARI
    select( {is_A349241(n,a(u)=abs(u-n\u))=bigomega(n)==4 && a((s=factor(n)[,1])[#s])>a(s[1]*s[#s])}, [1..1000])
    
  • Python
    from itertools import chain
    from sympy import factorint
    def expand(n):
        return list(chain.from_iterable([[i[0] for j in range(i[1])] for i in factorint(n).items()]))
    def is_ok(p,q,r,s):
        return abs(p*q*r-s) > abs(p*s-q*r)
    print([i for  i in range(2, 1000) if len(expand(i)) == 4 and is_ok(*expand(i))]) # Gleb Ivanov, Nov 12 2021

Formula

{ N in A014613 | |g - N/g| > |sg - N/sg| }, where g = gpf(N) = A006530(N) is the greatest, and s = spf(N) = A020639(N) is the smallest prime factor.
Showing 1-9 of 9 results.