cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A128200 Numbers of divisors of semiprime powers: A000005(A085155(n)).

Original entry on oeis.org

1, 3, 4, 3, 4, 4, 4, 5, 4, 4, 3, 4, 4, 4, 4, 9, 4, 4, 4, 3, 4, 4, 4, 4, 4, 7, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 9, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 9, 4, 4, 4, 4, 4, 4, 4, 4, 4, 16, 4, 4, 4, 4, 9, 4, 4, 4, 4, 4, 4, 4, 9, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 04 2007

Keywords

Comments

The range of this sequence is the union of squares and the odd numbers: A128201.

Crossrefs

Programs

  • Mathematica
    sppQ[n_] := With[{f = FactorInteger[n][[All, 2]]}, n == 1 || Length[f] == 1 && EvenQ[f[[1]]] || Length[f] == 2 && f[[1]] == f[[2]]];
    DivisorSigma[0, #]& /@ Select[Range[1000], sppQ] (* Jean-François Alcover, Nov 21 2020 *)

Formula

a(n) = (1+A001222(A085155(n))/A001221(A085155(n)))^A001221(A085155(n)).

A085156 Powers of primes or powers of semiprimes.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 100, 101
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 21 2003

Keywords

Comments

m is a term iff A067029(m) = A071178(m) and A001221(m) <= 2.

Crossrefs

Union of A000961 and A085155.

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;;, 2]]}, Length[e] == 1 || (Length[e] == 2 && Equal @@ e)]; Select[Range[100], q] (* Amiram Eldar, Apr 19 2025 *)
  • PARI
    is(n)=my(f=factor(n)[, 2]); #f<2 || (#f==2 && f[1]==f[2]) \\ Charles R Greathouse IV, Oct 19 2015

A303661 Powers of squarefree semiprimes that are not squarefree.

Original entry on oeis.org

36, 100, 196, 216, 225, 441, 484, 676, 1000, 1089, 1156, 1225, 1296, 1444, 1521, 2116, 2601, 2744, 3025, 3249, 3364, 3375, 3844, 4225, 4761, 5476, 5929, 6724, 7225, 7396, 7569, 7776, 8281, 8649, 8836, 9025, 9261, 10000, 10648, 11236, 12321, 13225, 13924, 14161, 14884
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 28 2018

Keywords

Examples

			1089 is in the sequence because 1089 = 3^2*11^2.
1296 is in the sequence because 1296 = 2^4*3^4.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[15000], Length[Union[FactorInteger[#][[All, 2]]]] == 1 && PrimeNu[#] == 2 && ! SquareFreeQ[#] &]
    seq[max_] := Module[{sp = Select[Range[Floor@Sqrt[max]], SquareFreeQ[#] && PrimeNu[#] == 2 &], s = {}}, Do[s = Join[s, sp[[k]]^Range[2, Floor@Log[sp[[k]], max]]], {k, 1, Length[sp]}]; Union@s]; seq[10000] (* Amiram Eldar, Feb 12 2021 *)
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A303661(n):
        def g(x): return int(-(t:=primepi(s:=isqrt(x)))-(t*(t-1)>>1)+sum(primepi(x//k) for k in primerange(1, s+1)))
        def f(x): return n-1+x-sum(g(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024

Formula

Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/((A006881(n)-1)*A006881(n)) = Sum_{k>=2} (P(k)^2 - P(2*k))/2 = 0.07160601536406295068..., where P(k) is the prime zeta function. - Amiram Eldar, Feb 12 2021

A122443 Least prime factor of powers of semiprimes.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 3, 2, 3, 2, 5, 2, 3, 2, 5, 2, 2, 3, 2, 7, 3, 5, 3, 2, 2, 2, 5, 3, 2, 7, 3, 2, 5, 2, 3, 7, 3, 2, 5, 2, 2, 3, 5, 2, 7, 11, 2, 3, 3, 7, 2, 3, 2, 11, 5, 2, 5, 2, 3, 7, 2, 13, 3, 2, 3, 5, 11, 2, 2, 3, 2, 7, 5, 2, 11, 3, 2, 5, 2, 7, 2, 3, 13, 3, 2, 5, 3, 13
Offset: 1

Views

Author

Jonathan Vos Post, Sep 06 2006

Keywords

Crossrefs

Cf. A122444 (greatest prime factor of powers of semiprimes).
Cf. A076396 (smallest prime factor of n-th perfect power).

Programs

  • Mathematica
    FactorInteger[#][[1, 1]] & /@ Select[Range@ 250, Function[n, Or[n == 1, And[Length@ # == 1, EvenQ@ First@ #], And[Length@ # == 2, SameQ @@ #]] &[FactorInteger[n][[All, -1]]]]] (* Michael De Vlieger, Mar 04 2017 *)
  • PARI
    is(n)=my(f=factor(n)[, 2]); #f==0 || (#f==2 && f[1]==f[2]) || (#f==1 && f[1]%2==0);
    spf(n) = if (n==1, 1, factor(n)[1,1]);
    lista(nn) = {for (n=1, nn, if (is(n), print1(spf(n), ", ")););} \\ Michel Marcus, Mar 04 2017

Formula

a(n) = A020639(A085155(n)) = least prime factor of A085155 powers of semiprimes.

Extensions

More terms from Michel Marcus, Mar 04 2017

A122444 Greatest prime factor of powers of semiprimes.

Original entry on oeis.org

1, 2, 3, 3, 5, 7, 5, 2, 7, 11, 5, 13, 11, 17, 7, 3, 19, 13, 23, 7, 17, 11, 19, 29, 31, 2, 13, 23, 37, 11, 3, 41, 17, 43, 29, 13, 31, 47, 19, 5, 53, 37, 23, 59, 17, 11, 61, 41, 43, 19, 67, 47, 71, 13, 29, 73, 31, 79, 53, 23, 83
Offset: 1

Views

Author

Jonathan Vos Post, Sep 06 2006

Keywords

Comments

A122443 is least prime factor of powers of semiprimes. Cf. A076397 Largest prime factor of n-th perfect power.

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[-1, 1]] & /@ Select[Range@ 168, Function[n, Or[n == 1, And[Length@ # == 1, EvenQ@ First@ #], And[Length@ # == 2, SameQ @@ #]] &[FactorInteger[n][[All, -1]]]]] (* Michael De Vlieger, Mar 04 2017 *)

Formula

a(n) = A006530(A085155(n)) = greatest prime factor of A085155 powers of semiprimes.

A180868 Numbers n such that n and n+1 are semiprime powers.

Original entry on oeis.org

9, 14, 15, 21, 25, 33, 34, 35, 38, 57, 64, 81, 85, 86, 93, 94, 118, 121, 122, 133, 141, 142, 145, 158, 177, 201, 202, 205, 213, 214, 215, 216, 217, 218, 225, 253, 298, 301, 302, 326, 334, 361, 381, 393, 394, 445, 446, 453, 481, 484, 501
Offset: 1

Views

Author

Jonathan Vos Post, Jan 22 2011

Keywords

Comments

This is to semiprimes A001358 and powers of semiprimes A085155 as A006549 is to primes A000040 and powers of primes A000961.

Examples

			15 is in the sequence because 15 = (3*5)^1 and 15+1 = 16 = (2*2)^2 are both semiprime powers.
		

Crossrefs

Programs

  • Maple
    spp:= proc(n) option remember; local l;
            if n<2 or isprime(n) then false
            else l:= ifactors(n)[2];
                 if nops(l)>2 then false
               elif nops(l)=2 then evalb(l[1][2]=l[2][2])
               else evalb(irem(l[1][2], 2)=0)
                 fi
            fi
          end:
    a:= proc(n) option remember; local k;
          for k from 1+ `if`(n=1, 8, a(n-1))
            while not spp(k) or not spp(k+1)
          do od; k
        end:
    seq(a(n), n=1..80);  # Alois P. Heinz, Jan 22 2011
  • Mathematica
    sppQ[n_] := With[{f = FactorInteger[n][[All, 2]]}, n==1 || Length[f]==1 && EvenQ[f[[1]]] || Length[f]==2 && f[[1]]==f[[2]]];
    Select[Range[1000], sppQ[#] && sppQ[#+1]&] (* Jean-François Alcover, Nov 21 2020 *)

Formula

{ n : {n,n+1} is subset of {A085155} } = { n : n = A001358(i)^j and n+1 = A001358(k)^m }.

Extensions

More terms and edited by Alois P. Heinz, Jan 22 2011
Showing 1-6 of 6 results.