cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A322551 Primes indexed by squarefree semiprimes.

Original entry on oeis.org

13, 29, 43, 47, 73, 79, 101, 137, 139, 149, 163, 167, 199, 233, 257, 269, 271, 293, 313, 347, 373, 389, 421, 439, 443, 449, 467, 487, 491, 499, 577, 607, 631, 647, 653, 673, 677, 727, 751, 757, 811, 821, 823, 829, 839, 907, 929, 937, 947, 983, 1051, 1061, 1093
Offset: 1

Views

Author

Gus Wiseman, Dec 15 2018

Keywords

Comments

A squarefree semiprime is a product of two distinct prime numbers.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of non-loop edges.

Examples

			The sequence of edges whose MM-numbers belong to the sequence begins: {{1,2}}, {{1,3}}, {{1,4}}, {{2,3}}, {{2,4}}, {{1,5}}, {{1,6}}, {{2,5}}, {{1,7}}, {{3,4}}, {{1,8}}, {{2,6}}, {{1,9}}, {{2,7}}, {{3,5}}, {{2,8}}.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]==1&&PrimeOmega[PrimePi[#]]==2&&SquareFreeQ[PrimePi[#]]&]
  • PARI
    isok(p) = isprime(p) && (ip=primepi(p)) && (omega(ip)==2) && (bigomega(ip) == 2); \\ Michel Marcus, Dec 16 2018

A085155 Powers of semiprimes.

Original entry on oeis.org

1, 4, 6, 9, 10, 14, 15, 16, 21, 22, 25, 26, 33, 34, 35, 36, 38, 39, 46, 49, 51, 55, 57, 58, 62, 64, 65, 69, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 21 2003

Keywords

Comments

Numbers of form A001358(i)^j;
m>1 is a term iff A067029(m)=A071178(m) and (A001221(m)=2 or A067029(m) is even).

Crossrefs

Semiprime analog of A000961 = prime powers.

Programs

  • Mathematica
    Select[Range@ 166, Function[n, Or[n == 1, And[Length@ # == 1, EvenQ@ First@ #], And[Length@ # == 2, SameQ @@ #]] &[FactorInteger[n][[All, -1]]]]] (* Michael De Vlieger, Mar 04 2017 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); #f==0 || (#f==2 && f[1]==f[2]) || (#f==1 && f[1]%2==0) \\ Charles R Greathouse IV, Oct 19 2015

Formula

{1} UNION {A001358 semiprimes} UNION {A074985 squares of semiprimes} UNION {cubes of semiprimes} UNION {4th powers of semiprimes} UNION ... - Jonathan Vos Post, Sep 06 2006

A102466 Numbers such that the number of divisors is the sum of numbers of prime factors with and without repetitions.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 09 2005

Keywords

Comments

A000005(a(n)) = A001221(a(n)) + A001222(a(n)); prime powers are a subsequence (A000961); complement of A102467; not the same as A085156.
Equals { n | omega(n)=1 or Omega(n)=2 }, that is, these are exactly the prime powers (>1) and semiprimes. - M. F. Hasler, Jan 14 2008
For n > 1: A086971(a(n)) <= 1. - Reinhard Zumkeller, Dec 14 2012

Crossrefs

Programs

  • Haskell
    a102466 n = a102466_list !! (n-1)
    a102466_list = [x | x <- [1..], a000005 x == a001221 x + a001222 x]
    -- Reinhard Zumkeller, Dec 14 2012
    
  • Maple
    with(numtheory):
    q:= n-> is(tau(n)=bigomega(n)+nops(factorset(n))):
    select(q, [$1..200])[];  # Alois P. Heinz, Jul 14 2023
  • Mathematica
    Select[Range[110],DivisorSigma[0,#]==PrimeOmega[#]+PrimeNu[#]&] (* Harvey P. Dale, Mar 09 2016 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); #f==1 || f==[1,1]~ \\ Charles R Greathouse IV, Oct 19 2015
  • Sage
    def is_A102466(n) :
        return bool(sloane.A001221(n) == 1 or sloane.A001222(n) == 2)
    def A102466_list(n) :
        return [k for k in (1..n) if is_A102466(k)]
    A102466_list(109)  # Peter Luschny, Feb 08 2012
    
Showing 1-3 of 3 results.