cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A173083 Semiprimes q such that q^2+3 and q^2-3 are also semiprimes.

Original entry on oeis.org

6, 226, 262, 302, 314, 334, 346, 382, 466, 482, 514, 538, 562, 734, 778, 842, 866, 886, 898, 926, 974, 1006, 1046, 1282, 1306, 1318, 1322, 1438, 1466, 1478, 1574, 1622, 1774, 1822, 1838, 1858, 1894, 1994, 2302, 2342, 2446, 2518, 2578, 2582, 2602, 2638
Offset: 1

Views

Author

Keywords

Examples

			6^2-3=33 = 3*11 and 6^2+3=39 = 3*13 are semiprimes derived from q=6, so q=6 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}||Last/@FactorInteger[n]=={2}; lst={}; Do[If[f[n], a=n^2-3;b=n^2+3;If[f[a]&&f[b],AppendTo[lst,n]]],{n,8!}]; lst

Formula

{A001358(j): A074985(j)-3 in A001358 and A074985(j)+3 in A001358}. [R. J. Mathar, Mar 11 2010]

Extensions

Definition rephrased - R. J. Mathar, Mar 11 2010

A173084 Semiprimes q such that q^2-4 and q^2+4 are also semiprimes.

Original entry on oeis.org

9, 21, 69, 129, 381, 2271, 3849, 3909, 3921, 5001, 5079, 5169, 5349, 7041, 16251, 18129, 18399, 20481, 22569, 22641, 22719, 22809, 28029, 32259, 35151, 38559, 39021, 39441, 39981, 41079, 42459, 48759, 48819, 49431, 50649, 61629, 67929
Offset: 1

Views

Author

Keywords

Comments

From Robert Israel, Jun 01 2018: (Start)
Since q^2-4 = (q-2)(q+2), for this to be a semiprime requires q-2 and q+2 to be primes.
All terms == 3 (mod 6), thus q/3 is an odd prime. (End)

Examples

			9^2-4 = 77 = 7*11 and 9^2+4 = 85 = 5*13 are semiprimes created by q=9, which adds the semiprime q=9 to the sequence.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [n: n in [4..7*10^4] | IsSemiprime(n) and IsSemiprime(n^2+4) and IsSemiprime(n^2-4)]; // Vincenzo Librandi, Jun 02 2018
  • Maple
    N:= 10^5: # to get all terms <= N
    P:= select(isprime, [seq(i,i=3..N/3,2)]):
    select(q -> isprime(q-2) and isprime(q+2) and numtheory:-bigomega(q^2+4)=2, 3*P); # Robert Israel, Jun 01 2018
  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}||Last/@FactorInteger[n]=={2}; lst={}; Do[If[f[n], a=n^2-4;b=n^2+4;If[f[a]&&f[b],AppendTo[lst,n]]],{n,9!}]; lst

Extensions

Definition reworded by R. J. Mathar, Mar 14 2010

A173085 Numbers n such that n, n^2 - 5, and n^2 + 5 are semiprime.

Original entry on oeis.org

26, 62, 86, 118, 134, 566, 706, 982, 1198, 1322, 1346, 1678, 1706, 1822, 2386, 2402, 2498, 2654, 2966, 3086, 3142, 3158, 3326, 3662, 4222, 4874, 5158, 5354, 5774, 6602, 6638, 6746, 6998, 7142, 7586, 7646, 7834, 8006, 8482, 8486, 8846, 9134, 9406, 10558
Offset: 1

Views

Author

Keywords

Comments

26^2-5=671 -> 11*61, 26^2+5=681 -> 3*227,..

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}||Last/@FactorInteger[n]=={2}; lst={};Do[If[f[n], a=n^2-5;b=n^2+5;If[f[a]&&f[b],AppendTo[lst,n]]],{n,9!}];lst
    Select[Range[12000],PrimeOmega[#]==PrimeOmega[#^2-5] == PrimeOmega[ #^2+5] == 2&] (* Harvey P. Dale, Aug 29 2021 *)
  • PARI
    issemi(n)=bigomega(n)==2
    is(n)=if(n%2, isprime((n^2-5)\2) && isprime((n^2+5)\2) && issemi(n), isprime(n/2) && issemi(n^2-5) && issemi(n^2+5)) \\ Charles R Greathouse IV, Sep 14 2015

Formula

a(n) >> n log n. - Charles R Greathouse IV, Sep 14 2015

Extensions

Edited by Charles R Greathouse IV, Apr 06 2010

A173086 Numbers n such that n, n^2 - 6, and n^2 + 6 are semiprime.

Original entry on oeis.org

4, 10, 49, 95, 121, 217, 247, 289, 295, 301, 305, 335, 371, 427, 469, 493, 535, 551, 581, 583, 707, 721, 745, 749, 767, 815, 817, 835, 851, 893, 899, 901, 973, 1099, 1169, 1205, 1219, 1253, 1333, 1349, 1379, 1405, 1501, 1603, 1685, 1711, 1739, 1751, 1757, 1765
Offset: 1

Views

Author

Keywords

Examples

			4=2*2, 4^2-6=10=2*5, 4^2+6=22=2*11, so 4 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}||Last/@FactorInteger[n]=={2}; lst={};Do[If[f[n], a=n^2-6;b=n^2+6;If[f[a]&&f[b],AppendTo[lst,n]]],{n,8!}];lst

Extensions

Edited by Charles R Greathouse IV, Apr 06 2010

A173087 Semiprimes k such that k^2 - 7 and k^2 + 7 are also semiprime.

Original entry on oeis.org

82, 142, 214, 254, 326, 358, 386, 478, 538, 542, 566, 674, 758, 802, 974, 1198, 1366, 1466, 1594, 1754, 1762, 1942, 2302, 2342, 2374, 2582, 2654, 2746, 2762, 2818, 2998, 3106, 3134, 3418, 3494, 3518, 3554, 3566, 3646, 3734, 3778, 3862, 4138, 4178, 4258
Offset: 1

Views

Author

Keywords

Examples

			82 = 2*41, 82^2 - 7 = 6717 = 3*2239 and 82^2 + 7 = 6731 = 53*127 are all semiprime, hence 82 is a term.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [ n: n in [2..4300] | IsSemiprime(n) and IsSemiprime(n^2-7) and IsSemiprime(n^2+7) ]; // Klaus Brockhaus, Feb 25 2010
  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}||Last/@FactorInteger[n]=={2}; lst={};Do[If[f[n], a=n^2-7;b=n^2+7;If[f[a]&&f[b],AppendTo[lst,n]]],{n,8!}];lst
    Select[Range[4500],Thread[PrimeOmega[{#,#^2-7,#^2+7}]]=={2,2,2}&] (* Harvey P. Dale, Jul 27 2022 *)

Extensions

Edited by Klaus Brockhaus and N. J. A. Sloane, Feb 25 2010
Showing 1-5 of 5 results.