cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A284691 Numbers of the form (10^c-1)*the product any two (not necessarily distinct) terms of A074992.

Original entry on oeis.org

9, 99, 333, 999, 3663, 9999, 12321, 30303, 36963, 99999, 135531, 333333, 369963, 999999, 1121211, 1367631, 3003003, 3363633, 3699963, 9999999, 12333321, 13688631, 33033033, 33666633, 36999963, 99999999, 102030201, 111111111, 124454421, 136898631, 300030003
Offset: 1

Views

Author

Ahmad J. Masad, Apr 01 2017

Keywords

Comments

Conjecture 1: all terms are palindromic in base 10.
Conjecture 2: the sequence A074992 is the maximally dense sequence with this palindromic products property.

Examples

			a(3) = 37*9 = 333, with respect to strictly increasing ordering.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = (10^(2 n) + 10^n + 1)/3; c[n_] := 10^n - 1; mx = 10^10; i=1; Union@ Reap[ While[c[i] <= mx, j=0; While[c[i] f[j] <= mx, k=0; While[k <= j && (v = c[i] f[j] f[k]) <= mx, Sow@v; k++]; j++]; i++]][[2, 1]] (* Giovanni Resta, Apr 01 2017 *)

Extensions

a(13)-a(31) from Giovanni Resta, Apr 01 2017

A074991 Concatenation of n, n+1, n+2 divided by 3.

Original entry on oeis.org

4, 41, 78, 115, 152, 189, 226, 263, 2970, 30337, 33704, 37071, 40438, 43805, 47172, 50539, 53906, 57273, 60640, 64007, 67374, 70741, 74108, 77475, 80842, 84209, 87576, 90943, 94310, 97677, 101044, 104411, 107778, 111145, 114512
Offset: 0

Views

Author

Amarnath Murthy, Aug 31 2002

Keywords

Comments

If all the three numbers have the same number of digits then the terms are in A.P. with a common difference that follows a pattern with increase in number of digits. E.g. for n = 1 to 7 the common difference, c.d. = 37. For n = 10 to 97 c.d. = 3367, For three digit numbers from 100 to 997 it is 333667 etc.

Examples

			a(4) = 456/3 = 152.
		

Crossrefs

Cf. A074992.
Equals (1/3) A001703.

Programs

  • Maple
    read("transforms") ;
    A074991 := proc(n)
            digcatL([n,n+1,n+2]) ;
            %/3 ;
    end proc:
    seq(A074991(n),n=0..50) ; # R. J. Mathar, Oct 04 2011
  • Mathematica
    f[n_] := FromDigits@ Flatten@ IntegerDigits[{n, n + 1, n + 2}]/3; Array[f, 26, 0] (* Robert G. Wilson v *)

Extensions

Incorrect conjecture deleted by Colin Barker, Sep 26 2013

A075000 Smallest number such that n*a(n) is a concatenation of n consecutive integers; or 0 if no such number exists.

Original entry on oeis.org

1, 6, 41, 864, 2469, 20576, 493827, 7098637639, 13717421, 1234567891, 82737383012865106529, 10288065758426, 3513762316247164732, 563643651522439401227280, 8230452606740808761
Offset: 1

Views

Author

Amarnath Murthy, Aug 31 2002

Keywords

Comments

Conjecture: For every n there exists a nonzero a(n).

Examples

			a(11) = 82737383012865106529 as 11*82737383012865106529 = 910111213141516171819 is the concatenation of 11 numbers from 9 to 19.
		

Crossrefs

Programs

  • Mathematica
    f[ n_ ] := Block[ {id = Range@n}, While[ k = FromDigits@ Flatten@ IntegerDigits@ id/n; !IntegerQ@k, id++ ]; k ]; Array[ f, 16 ] (* Robert G. Wilson v, Oct 19 2007 *)

Formula

a(n) = A077306(n)/n. - Amarnath Murthy, Nov 03 2002

Extensions

More terms from Rick L. Shepherd, Sep 03 2002

A066138 a(n) = 10^(2*n) + 10^n + 1.

Original entry on oeis.org

3, 111, 10101, 1001001, 100010001, 10000100001, 1000001000001, 100000010000001, 10000000100000001, 1000000001000000001, 100000000010000000001, 10000000000100000000001, 1000000000001000000000001, 100000000000010000000000001, 10000000000000100000000000001, 1000000000000001000000000000001
Offset: 0

Views

Author

Henry Bottomley, Dec 07 2001

Keywords

Comments

Palindromes whose digit sum is 3.
Essentially the same as A135577. - R. J. Mathar Apr 29 2008
From Peter Bala, Sep 25 2015: (Start)
For n >= 1, the simple continued fraction expansion of sqrt(a(n)) = [10^n; 1, 1, 2/3*(10^n - 1), 1, 1, 2*10^n, ...] has period 6. As n increases, the expansion has the large partial quotients 2/3*(10^n - 1) and 2*10^n.
For n >= 1, the continued fraction expansion of sqrt(a(2*n))/a(n) = [0; 1, 10^n - 1, 1, 1, 1/3*(10^n - 4), 1, 4, 1, 1/3*(10^n - 4), 1, 1, 10^n - 1, 2, 10^n - 1, ...] has pre-period of length 3 and period 12 beginning 1, 1, 1/3*(10^n - 4), .... As n increases, the expansion has the large partial quotients 10^n - 1 and 1/3*(10^n - 4).
A theorem of Kuzmin in the measure theory of continued fractions says that large partial quotients are the exception in continued fraction expansions.
Empirically, we also see exceptionally large partial quotients in the continued fraction expansions of the m-th root of the numbers a(m*n), for m >= 3. For example, it appears that the continued fraction expansion of a(3*n)^(1/3), for n >= 2, begins [10^(2*n); 3*10^n - 1, 1, 0.5*10^(2*n) - 1, 1.44*10^n - 1, 1, ...]. Cf. A000533, A002283 and A168624. (End)

Examples

			From _Peter Bala_, Sep 25 2015: (Start)
Simple continued fraction expansions showing large partial quotients:
a(9)^(1/3) =[1000000; 2999, 1, 499999, 1439, 1, 2582643, 1, 1, 1, 2, 3, 3, ...].
a(20)^(1/4) = [10000000000; 39999999999, 1, 3999999999, 16949152542, 2, 1, 2, 6, 1, 4872106, 3, 9, 2, 3, ...].
a(25)^(1/5) = [10000000000; 4999999999999999, 1, 3333333332, 2, 1, 217391304347825, 2, 2, 1, 1, 1, 2, 1, 23980814, 1, 1, 1, 1, 1, 7, ...]. (End)
		

Crossrefs

Programs

  • Magma
    [10^(2*n) + 10^n + 1: n in [0..20]]; // Vincenzo Librandi, Sep 27 2015
  • Mathematica
    Table[10^(2 n) + 10^n + 1, {n, 0, 15}] (* Michael De Vlieger, Sep 27 2015 *)
    CoefficientList[Series[(3 - 222 x + 1110 x^2)/((1 - 100 x) (1 - 10 x) (1 - x)), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 27 2015 *)
  • PARI
    a(n) = { 10^(2*n) + 10^n + 1 } \\ Harry J. Smith, Feb 02 2010
    
  • PARI
    Vec(-3*(370*x^2-74*x+1)/((x-1)*(10*x-1)*(100*x-1)) + O(x^20)) \\ Colin Barker, Sep 27 2015
    

Formula

A168624(n) = a(2*n)/a(n). - Peter Bala, Sep 24 2015
G.f.: (3 - 222*x + 1110*x^2)/((1 - 100*x)*(1 - 10*x)*(1 - x)). - Vincenzo Librandi, Sep 27 2015
From Colin Barker, Sep 27 2015: (Start)
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
G.f.: -3*(370*x^2-74*x+1)/((x-1)*(10*x-1)*(100*x-1)). (End)
From Elmo R. Oliveira, Aug 27 2024: (Start)
E.g.f.: exp(x)*(exp(99*x) + exp(9*x) + 1).
a(n) = 3*A074992(n). (End)

Extensions

Offset changed from 1 to 0 by Harry J. Smith, Feb 02 2010
More terms from Michael De Vlieger, Sep 27 2015

A074996 Floor of concatenation of n, n+1, n+2, n+3, n+4, n+5 divided by 6.

Original entry on oeis.org

2057, 20576, 39094, 57613, 76131, 946485, 11315168, 131516852, 1485018535, 15168520219, 16852021902, 18535523586, 20219025269, 21902526953, 23586028636, 25269530320, 26953032003, 28636533687, 30320035370
Offset: 0

Views

Author

Amarnath Murthy, Aug 31 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[FromDigits[Flatten[IntegerDigits[Range[n,n+5]]]]/6],{n,0,18}] (* Jayanta Basu, May 22 2013 *)

Extensions

Edited by Dean Hickerson, Nov 03 2002

A074999 Floor[concatenation of nine consecutive numbers from n to n+8 divided by 9].

Original entry on oeis.org

1371742, 13717421, 260630990, 3840876779, 50754344568, 630990012357, 7543445680146, 87677901347935, 990012357015724, 10112346812683513, 11234681268351302, 12357015724019091, 13479350179686880
Offset: 0

Views

Author

Amarnath Murthy, Aug 31 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[Flatten[IntegerDigits/@Range[n,n+8]]]/9,{n,0,20}] (* Harvey P. Dale, Feb 19 2018 *)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 18 2003

A073086 Floor[concatenation of eight consecutive numbers from n to n+7 divided by 8].

Original entry on oeis.org

154320, 1543209, 2932098, 43209863, 570986376, 7098637639, 84863763901, 986376390164, 11137639016426, 113763901642689, 126390164268952, 139016426895214, 151642689521477, 164268952147740, 176895214774002
Offset: 0

Views

Author

Amarnath Murthy, Aug 31 2002

Keywords

Crossrefs

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 18 2003

A074993 a(n) = floor((concatenation of n, n+1)/2).

Original entry on oeis.org

0, 6, 11, 17, 22, 28, 33, 39, 44, 455, 505, 556, 606, 657, 707, 758, 808, 859, 909, 960, 1010, 1061, 1111, 1162, 1212, 1263, 1313, 1364, 1414, 1465, 1515, 1566, 1616, 1667, 1717, 1768, 1818, 1869, 1919, 1970, 2020, 2071, 2121, 2172, 2222, 2273, 2323, 2374
Offset: 0

Views

Author

Amarnath Murthy, Aug 31 2002

Keywords

Comments

The first differences follow a pattern. Odd-indexed terms and even-indexed terms form separate A.P.s with the same common difference for all n except n = 10^k -1. The corresponding common differences are the repunits = (10^(d+1)-1)/9 where d = the number of digits in n.

Crossrefs

Programs

  • Mathematica
    cc[n_]:=Floor[FromDigits[Join[IntegerDigits[n],IntegerDigits[n+1]]]/2]; Array[cc,40,0] (* Harvey P. Dale, Nov 11 2011 *)

A074994 Floor of concatenation of n, n+1, n+2, n+3 divided by 4.

Original entry on oeis.org

30, 308, 586, 864, 1141, 1419, 1697, 19727, 222752, 2275278, 2527803, 2780328, 3032853, 3285379, 3537904, 3790429, 4042954, 4295480, 4548005, 4800530, 5053055, 5305581, 5558106, 5810631, 6063156, 6315682, 6568207, 6820732
Offset: 0

Views

Author

Amarnath Murthy, Aug 31 2002

Keywords

Examples

			a(7) = floor(78910/4) = 19727.
		

Crossrefs

Extensions

Edited by Dean Hickerson, Nov 03 2002

A074995 Floor of concatenation of n, n+1, n+2, n+3, n+4 divided by 5.

Original entry on oeis.org

246, 2469, 4691, 6913, 9135, 11357, 135782, 1578202, 17820222, 182022242, 202224262, 222426283, 242628303, 262830323, 283032343, 303234363, 323436384, 343638404, 363840424, 384042444, 404244464, 424446485, 444648505, 464850525
Offset: 0

Views

Author

Amarnath Murthy, Aug 31 2002

Keywords

Crossrefs

Extensions

Edited by Dean Hickerson, Nov 03 2002
Showing 1-10 of 15 results. Next