cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A075027 Numbers k such that d(k-1) < d(k) > d(k+1), d = A000005.

Original entry on oeis.org

4, 6, 8, 10, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 50, 52, 54, 56, 60, 64, 66, 68, 70, 72, 78, 80, 84, 88, 90, 92, 96, 100, 102, 108, 110, 112, 114, 120, 124, 126, 128, 130, 132, 138, 140, 144, 150, 152, 154, 156, 160, 162, 165, 168, 170, 174, 176, 180
Offset: 1

Views

Author

Amarnath Murthy, Sep 02 2002

Keywords

Comments

Obviously every term is composite.
The average of each twin prime pair is a term.
a(55) = 165 is the first odd term; A323379 lists all odd terms. - Jon E. Schoenfield, Sep 26 2021

Examples

			10 is a term since d(9) = 3, d(10) = 4, d(11) = 2 and 3 < 4 > 2.
		

Crossrefs

Programs

  • Maple
    q:= k-> (d-> d(k-1)d(k+1))(numtheory[tau]):
    select(q, [$1..200])[];  # Alois P. Heinz, Sep 28 2021
  • Mathematica
    #[[2,1]]&/@Select[Partition[Table[{n,DivisorSigma[0,n]},{n,200}],3,1], #[[1,-1]]<#[[2,-1]]>#[[3,-1]]&] (* Harvey P. Dale, Oct 09 2011 *)

Extensions

More terms from Jason Earls, Sep 04 2002

A067345 Square array read by antidiagonals: T(n,k)=(T(n,k-1)*n^2-Catalan(k-1))/(n-1) with a(n,1)=1 and a(1,k)=Catalan(k) where Catalan(k)=C(2k,k)/(k+1)=A000108(k).

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 14, 10, 4, 1, 42, 35, 17, 5, 1, 132, 126, 74, 26, 6, 1, 429, 462, 326, 137, 37, 7, 1, 1430, 1716, 1446, 726, 230, 50, 8, 1, 4862, 6435, 6441, 3858, 1434, 359, 65, 9, 1, 16796, 24310, 28770, 20532, 8952, 2582, 530, 82, 10, 1, 58786, 92378, 128750
Offset: 1

Views

Author

Henry Bottomley, Jan 16 2002

Keywords

Comments

Also table given by Sum_{k, 0<=k<=n}A039598(n,k)*x^k ; table begins : x=0 : 1, 2, 5, 42, 132, ...(see A000108); x=1 : 1, 3, 10, 35, 126, ...(see A001700); x=2 : 1, 4, 17, 74, 326, ...(see A049027); x=3 : 1, 5, 26, 137, 726, ...(see A075025); x=4 : 1, 6, 37, 230, 1434, ...(see A075026); x=5 : 1, 7, 50, 359, 2582, ... - Philippe Deléham, Mar 21 2007

Crossrefs

Rows include A000108, A001700, A049027. Columns essentially include A000012, A000027, A002522.

Formula

T(n, k) =A067346(n, k)/(n-1) =A067347(n, k)/n

A075026 Define a number k to occupy a divisor cavity if d(k-1) > d(k) < d(k+1) where d(k) is the number of divisors of k. Sequence gives composite numbers occupying a divisor cavity.

Original entry on oeis.org

9, 25, 49, 51, 55, 65, 69, 77, 91, 111, 115, 121, 125, 129, 153, 155, 161, 169, 175, 183, 185, 187, 209, 221, 235, 237, 247, 249, 259, 265, 267, 274, 287, 289, 291, 295, 305, 309, 319, 321, 323, 329, 339, 341, 343, 351, 355, 361, 365, 369, 371, 377, 386, 391
Offset: 0

Views

Author

Amarnath Murthy, Sep 02 2002

Keywords

Crossrefs

Programs

Extensions

Corrected and extended by Jason Earls, Sep 04 2002

A361797 Even numbers k which have fewer divisors than both neighboring odd numbers, i.e., tau(k) < min{tau(k-1), tau(k+1)}.

Original entry on oeis.org

274, 386, 626, 926, 1126, 1174, 1234, 1546, 1574, 1594, 1646, 1774, 1814, 1954, 2036, 2066, 2092, 2186, 2234, 2276, 2302, 2374, 2386, 2402, 2404, 2554, 2638, 2738, 2876, 2906, 3158, 3244, 3334, 3394, 3446, 3554, 3566, 3574, 3758, 3814, 3994, 4124, 4166, 4174
Offset: 1

Views

Author

Steven Lu, Mar 25 2023

Keywords

Crossrefs

Even terms of A075025. Cf. A000005.

Programs

  • Maple
    Tau:= map(numtheory:-tau, [$1..10001]):
    select(t -> Tau[t] < Tau[t-1] and Tau[t] < Tau[t+1], [seq(i,i=2..10000,2)]); # Robert Israel, Mar 28 2023
  • Mathematica
    Select[2 Range[10000],
     DivisorSigma[0, #] < DivisorSigma[0, # + 1] &&
       DivisorSigma[0, #] < DivisorSigma[0, # - 1] &]
  • PARI
    isok(k) = !(k%2) && (numdiv(k) < min(numdiv(k-1), numdiv(k+1))); \\ Michel Marcus, Mar 26 2023

A369155 Numbers k such that d(k) < d(k - 1) and d(k) < d(k + 1), and d(k) is also a record for this type of number where d(k) is the number of divisors of k.

Original entry on oeis.org

5, 9, 51, 153, 351, 3249, 6579, 19551, 47151, 122451, 246975, 393471, 3292289, 10792495, 15270849, 25770879, 58967271, 60642945, 242340175, 481701375, 5122147185, 6644739375, 6971026699, 21061868751, 92330654625, 213089528575, 1159484186575, 1305664357375
Offset: 1

Views

Author

Zhicheng Wei, Jan 14 2024

Keywords

Comments

Numbers in A075025 with record number of divisors.

Examples

			351 is a term in this sequence because d(351) = 8, d(350) = 12, and d(352) = 12, so 351 is a number that has fewer divisors than each of its neighbors, but no number below 351 has that property and has at least 8 divisors.
		

Crossrefs

Cf. A000005. Subsequence of A075025.

Programs

  • PARI
    lista(kmax) = my(d1 = numdiv(1), d2 = numdiv(2), d3, dm = 0); for(k = 3, kmax, d3 = numdiv(k); if(d2 < d1 && d2 < d3 && d2 > dm, print1(k-1, ", "); dm = d2); d1 = d2; d2 = d3); \\ Amiram Eldar, Jan 16 2024

Extensions

a(9)-a(20) from Michel Marcus, Jan 15 2024
a(21)-a(22) from Amiram Eldar, Jan 16 2024
a(23)-a(28) from Martin Ehrenstein, Feb 08 2024
Showing 1-5 of 5 results.