A250269
Primitive part of n! (for n>=1): n! = Product_{d|n} a(d).
Original entry on oeis.org
1, 2, 6, 12, 120, 60, 5040, 1680, 60480, 15120, 39916800, 55440, 6227020800, 8648640, 1816214400, 518918400, 355687428096000, 147026880, 121645100408832000, 55870214400, 1689515283456000, 14079294028800, 25852016738884976640000, 771008958720
Offset: 1
The divisors of 10 are 1, 2, 5 and 10. 10! = a(1) * a(2) * a(5) * a(10) = 1 * 2 * 120 * 15120 = 3628800.
Between 1 and 10 inclusive, 4 integers are coprime to 10: 1, 3, 7 and 9. Let b(n) = lcm (1...n) = A003418(n), and let [x] denote the floor function. Then:
a(10) = b[10/1] * b[10/3] * b[10/7] * b[10/9]
" " = b(10) * b(3) * b(1) * b(1)
" " = 2520 * 6 * 1 * 1
" " = 15120.
-
Array[Product[(d!)^MoebiusMu[#/d], {d, Divisors[#]}] &, 24] (* Michael De Vlieger, Nov 11 2021 *)
-
a(n)={my(r=1);fordiv(n,d,r*=d!^moebius(n/d));r} \\ Joerg Arndt, Jan 18 2015
A075422
Primitive numbers n such that the product of factorials of all proper divisors of n does not divide n!.
Original entry on oeis.org
24, 30, 36, 40, 54, 84, 100, 102, 112, 126, 132, 140, 156, 176, 198, 208, 220, 228, 234, 260, 272, 276, 294, 308, 340, 342, 348, 350, 364, 372, 380, 392, 414, 444, 460, 462, 476, 490, 492, 516, 522, 532, 546, 558, 564, 572, 580, 608, 620, 636, 644, 666, 708
Offset: 1
The product of the factorials of the proper divisors of 24, 1! * 2! * 3! * 4! * 6! * 8! * 12!, is divisible by 2^26 and therefore does not divide 24! (which is divisible by 2^22 only). 24 is the smallest number with this property. - _M. F. Hasler_, Dec 31 2016
See
A248693 for the list of all (also non-primitive) terms (and PARI code).
-
f[n_] := n!/Apply[Times, Drop[Divisors[n], -1]! ]; a = {}; Do[b = f[n]; If[ !IntegerQ[b], If[ Select[n/a, IntegerQ] == {}, a = Append[a, n]]], {n, 1, 725}]; a
A248693
Numbers k such that the product of factorials of proper divisors of k does not divide k!.
Original entry on oeis.org
24, 30, 36, 40, 48, 54, 60, 72, 80, 84, 90, 96, 100, 102, 108, 112, 120, 126, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240, 252, 260, 264, 270, 272, 276, 280, 288, 294, 300, 306, 308, 312, 320
Offset: 1
Let Q(n) = n!/(product of the proper divisors of n). Then Q(n) an integer for n = 1..23, as indicated by the following list of Q(n) for n = 1..24: 1, 2, 6, 12, 120, 60, 5040, 840, 60480, 15120, 39916800, 2310, 6227020800, 8648640, 1816214400, 10810800, 355687428096000, 2042040, 121645100408832000, 116396280, 1689515283456000, 14079294028800, 25852016738884976640000, 7436429/48.
-
d[n_] := Drop[Divisors[n], -1]!; p[n_] := Apply[Times, d[n]]
u = Select[Range[25000], ! IntegerQ[#!/p[#]] &]; (* A248693 *)
Select[u, OddQ[#] &] (* A248694 *)
(* Second program *)
Select[Range@ 320, ! Divisible[#!, Times @@ Map[Factorial, Most@ Divisors@ #]] &] (* Michael De Vlieger, Dec 31 2016 *)
-
is(n)=prod(i=2,n-1,i,Mod(n,prod(j=2,-1+#n=divisors(n),n[j]!))) \\ Returns nonzero (actually, Mod(n!,P) where P = product_{d|n, dM. F. Hasler, Dec 30 2016
A075460
Odd primitive numbers such that n! divided by product of factorials of all proper divisors of n is not an integer.
Original entry on oeis.org
1575, 2835, 3465, 4095, 5355, 5775, 5985, 6435, 6615, 6825, 7245, 8085, 9135, 9765, 11655, 12705, 12915, 13545, 14805, 15015, 15435, 16695, 18585, 19215, 19635, 21105, 21945, 22275, 22365, 22995, 23205, 24885, 25245, 25935, 26145, 26565
Offset: 1
1575 = 3^2*5^2*7 is in the sequence, because the product of the factorials of its proper divisors { 1, 3, 5, 7, 9, 15, 21, 25, 35, 45, 63, 75, 105, 175, 225, 315, 525 } does not divide 1575!. (For example, the former's 2-adic valuation equals 1588 while the latter's 2-adic valuation equals only 1569.) This is the smallest odd number with this property. - _M. F. Hasler_, Dec 30 2016
Cf.
A075071. The first primitive n's with this property (most of which are even) are in
A075422.
-
f[n_] := n!/Apply[Times, Drop[Divisors[n], -1]! ]; a = {}; Do[b = f[n]; If[ !IntegerQ[b], If[ Select[n/a, IntegerQ] == {}, Print[n]; a = Append[a, n]]], {n, 1, 28213, 2}]; a
Showing 1-4 of 4 results.
Comments