cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075155 Cubes of Lucas numbers.

Original entry on oeis.org

8, 1, 27, 64, 343, 1331, 5832, 24389, 103823, 438976, 1860867, 7880599, 33386248, 141420761, 599077107, 2537716544, 10749963743, 45537538411, 192900170952, 817138135549, 3461452853383, 14662949322176, 62113250509227, 263115950765039, 1114577054530568
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 06 2002

Keywords

Crossrefs

Third row of array A103324.

Programs

  • Magma
    [ Lucas(n)^3 : n in [0..120]]; // Vincenzo Librandi, Apr 14 2011
    
  • Mathematica
    CoefficientList[Series[(8 - 23*x - 24*x^2 + x^3)/((x^2 + 4*x - 1)*(x^2 - x - 1)), {x,0,50}], x] (* or *) Table[LucasL[n]^3, {n,0,30}] (* or *) LinearRecurrence[{3,6,-3,-1}, {8, 1, 27, 64}, 30] (* G. C. Greubel, Dec 21 2017 *)
  • PARI
    a(n)=(fibonacci(n-1)+fibonacci(n+1))^3 \\ Charles R Greathouse IV, Feb 09 2016
    
  • Python
    from sympy import lucas
    def a(n):  return lucas(n)**3
    print([a(n) for n in range(25)]) # Michael S. Branicky, Aug 01 2021

Formula

a(n) = 3*(-1)^n*L(n) + L(3*n).
a(n) = (-1)^n*A075151(n).
a(n) = A000032(n)^3 = A000032(n) * A001254(n).
a(n) = L(n)*C(n)^2, L(n) = Lucas numbers (A000032), C(n) = reflected Lucas numbers (comment to A061084).
a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4), n>=4.
G.f.: ( 8-23*x-24*x^2+x^3 )/( (x^2+4*x-1)*(x^2-x-1) ).
a(n) = 2*A001077(n) + 3*A061084(n+1). - R. J. Mathar, Nov 17 2011
a(n) = L(3*n) + (F(n+4) - F(n-4))*(-1)^n, n>3 and F(n)=A000045(n). - J. M. Bergot, Feb 09 2016
a(n) + Sum_{i=0..n+1} a(i) = 19/2 + (5/2)*L(3*n+2). - Greg Dresden, Feb 24 2025

Extensions

Simpler definition from Ralf Stephan, Nov 01 2004