A103324
Square array T(n,k) read by antidiagonals: powers of Lucas numbers.
Original entry on oeis.org
2, 4, 1, 8, 1, 3, 16, 1, 9, 4, 32, 1, 27, 16, 7, 64, 1, 81, 64, 49, 11, 128, 1, 243, 256, 343, 121, 18, 256, 1, 729, 1024, 2401, 1331, 324, 29, 512, 1, 2187, 4096, 16807, 14641, 5832, 841, 47, 1024, 1, 6561, 16384, 117649, 161051, 104976, 24389, 2209, 76
Offset: 1
2,1,3,4,7,11,18,
4,1,9,16,49,121,324,
8,1,27,64,343,1331,5832,
16,1,81,256,2401,14641,104976,
32,1,243,1024,16807,161051,1889568,
64,1,729,4096,117649,1771561,34012224,
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 140.
A200381
Products of Lucas numbers.
Original entry on oeis.org
1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 18, 21, 22, 24, 27, 28, 29, 32, 33, 36, 42, 44, 47, 48, 49, 54, 56, 58, 63, 64, 66, 72, 76, 77, 81, 84, 87, 88, 94, 96, 98, 99, 108, 112, 116, 121, 123, 126, 128, 132, 141, 144, 147, 152, 154, 162, 168, 174, 176, 188
Offset: 1
Contains 9=3^2, 14=2*7, 21=3*7, 27=3^3, 42=2*3*7, 141 =3*47 etc.
-
lim = 11; luc = LucasL[Range[0, lim]]; luc = Delete[luc, 2]; last = luc[[-1]]; t = {1}; Do[t2 = luc[[n]]^Range[Floor[Log[last]/Log[luc[[n]]]]]; s = Select[Union[Flatten[Outer[Times, t, t2]]], # <= last &]; t = Union[t, s], {n, lim}]; t (* T. D. Noe, Nov 17 2011 *)
A075151
a(n)=L(n)^2*C(n), L(n)=Lucas numbers (A000032), C(n)=reflected Lucas numbers (comment to A061084).
Original entry on oeis.org
8, -1, 27, -64, 343, -1331, 5832, -24389, 103823, -438976, 1860867, -7880599, 33386248, -141420761, 599077107, -2537716544, 10749963743, -45537538411, 192900170952, -817138135549, 3461452853383, -14662949322176, 62113250509227, -263115950765039, 1114577054530568
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Sep 05 2002
-
[((-1)^n*Lucas(n))^3: n in [0..30]]; // Vincenzo Librandi, Apr 22 2018
-
CoefficientList[Series[(8+23*x-24*x^2-x^3)/(1+3*x-6*x^2-3*x^3+x^4), {x, 0, 25}], x]
LinearRecurrence[{-3,6,3,-1},{8,-1,27,-64},30] (* Harvey P. Dale, Apr 06 2013 *)
Table[LucasL[-n]^3, {n, 0, 25}] (* Vincenzo Librandi, Apr 22 2018 *)
A105941
Powers of Lucas numbers.
Original entry on oeis.org
1, 2, 3, 4, 7, 8, 9, 11, 16, 18, 27, 29, 32, 47, 49, 64, 76, 81, 121, 123, 128, 199, 243, 256, 322, 324, 343, 512, 521, 729, 841, 843, 1024, 1331, 1364, 2048, 2187, 2207, 2209, 2401, 3571, 4096, 5776, 5778, 5832, 6561, 8192, 9349, 14641, 15127, 15129, 16384
Offset: 1
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 56.
- Thomas Koshy, "Fibonacci and Lucas Numbers and Applications", Wiley, New York, 2001.
- V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers. Houghton, Boston, MA, 1969.
A000032 Lucas numbers.
A001254 Squares of Lucas numbers.
A075155 Cubes of Lucas numbers.
A099923 Fourth powers of Lucas numbers.
A103325 Fifth powers of Lucas numbers.
A103324 Square array T(n, k) read by antidiagonals: powers of Lucas numbers.
A105317 Powers of Fibonacci numbers.
-
lim = 10^5; t = Table[f = LucasL[n]; If[f == 1, {1}, f^Range[Floor[Log[lim]/Log[f]]]], {n, 0, Floor[Log[GoldenRatio, lim]]}]; Union[Flatten[t]] (* T. D. Noe, Sep 27 2011 *)
A105949
Powers of 3-Step Lucas numbers (A001644).
Original entry on oeis.org
1, 3, 9, 11, 21, 27, 39, 49, 71, 81, 121, 131, 241, 243, 343, 441, 443, 729, 815, 1331, 1499, 1521, 2187, 2401, 2757, 5041, 5071, 6561, 9261, 9327, 14641, 16807, 17155, 17161, 19683, 31553, 58035, 58081, 59049, 59319, 106743, 117649, 161051, 177147
Offset: 1
Showing 1-5 of 5 results.
Comments