cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A286617 Restricted growth sequence of A278217 (prime-signature of A075159(1+n)).

Original entry on oeis.org

1, 2, 2, 3, 4, 2, 3, 5, 6, 4, 2, 4, 6, 3, 5, 7, 8, 6, 4, 9, 4, 2, 4, 6, 10, 6, 3, 6, 8, 5, 7, 11, 12, 8, 6, 13, 9, 4, 9, 13, 6, 4, 2, 4, 9, 4, 6, 8, 14, 10, 6, 13, 6, 3, 6, 10, 14, 8, 5, 8, 12, 7, 11, 15, 16, 12, 8, 17, 13, 6, 13, 18, 13, 9, 4, 9, 19, 9, 13, 17, 8, 6, 4, 9, 4, 2, 4, 6, 13, 9, 4, 9, 13, 6, 8, 12, 20, 14, 10, 18, 13, 6, 13, 18, 10, 6, 3, 6, 13
Offset: 0

Views

Author

Antti Karttunen, May 17 2017

Keywords

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A005811(n) = hammingweight(bitxor(n, n>>1));  \\ This function from Gheorghe Coserea, Sep 03 2015
    A286468(n) = { my(p=((n+1)%2), i=0, m=1); while(n>0, if(((n%2)==p), m *= prime(i), p = (n%2); i = i+1); n = n\2); m };
    A075157(n) = if(!n,n,(prime(A005811(n))*A286468(n))-1);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A278217(n) = A046523(1+A075157(n));
    write_to_bfile(0,rgs_transform(vector(65538,n,A278217(n-1))),"b286617.txt");

A278217 Filter-sequence related to base-2 run-length encoding: a(n) = A046523(A075159(1+n)) = A046523(1+A075157(n)).

Original entry on oeis.org

1, 2, 2, 4, 6, 2, 4, 8, 12, 6, 2, 6, 12, 4, 8, 16, 24, 12, 6, 30, 6, 2, 6, 12, 36, 12, 4, 12, 24, 8, 16, 32, 48, 24, 12, 60, 30, 6, 30, 60, 12, 6, 2, 6, 30, 6, 12, 24, 72, 36, 12, 60, 12, 4, 12, 36, 72, 24, 8, 24, 48, 16, 32, 64, 96, 48, 24, 120, 60, 12, 60, 180, 60, 30, 6, 30, 210, 30, 60, 120, 24, 12, 6, 30, 6, 2, 6, 12, 60, 30, 6, 30, 60, 12, 24, 48, 144, 72
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Crossrefs

Cf. A046523, A075157, A075159, A286617 (rgs-version of this filter).
Other base-2 related filter sequences: A278219, A278222.
Sequences that partition N into same or coarser equivalence classes are at least these: A092339, A227185.

Programs

Formula

a(n) = A046523(1+A075157(n)) = A046523(A075159(1+n)).

A075157 Run lengths in the binary expansion of n gives the vector of exponents in prime factorization of a(n)+1, with the least significant run corresponding to the exponent of the least prime, 2; with one subtracted from each run length, except for the most significant run of 1's.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 8, 7, 11, 14, 6, 9, 17, 24, 26, 15, 23, 44, 34, 29, 13, 10, 20, 19, 35, 74, 48, 49, 53, 124, 80, 31, 47, 134, 174, 89, 69, 76, 104, 59, 27, 32, 12, 21, 41, 54, 62, 39, 71, 224, 244, 149, 97, 120, 146, 99, 107, 374, 342, 249, 161, 624, 242, 63, 95, 404
Offset: 0

Views

Author

Antti Karttunen, Sep 13 2002

Keywords

Comments

To make this a permutation of nonnegative integers, we subtract one from each run count except for the most significant run, e.g. a(11) = 9, as 11 = 1011 and 9+1 = 10 = 5^1 * 3^(1-1) * 2^(2-1).

Crossrefs

Programs

  • Haskell
    import Data.List (group)
    a075157 0 = 0
    a075157 n = product (zipWith (^) a000040_list rs') - 1 where
       rs' = reverse $ r : map (subtract 1) rs
       (r:rs) = reverse $ map length $ group $ a030308_row n
    -- Reinhard Zumkeller, Aug 04 2014
    
  • PARI
    A005811(n) = hammingweight(bitxor(n, n>>1));  \\ This function from Gheorghe Coserea, Sep 03 2015
    A286468(n) = { my(p=((n+1)%2), i=0, m=1); while(n>0, if(((n%2)==p), m *= prime(i), p = (n%2); i = i+1); n = n\2); m };
    A075157(n) = if(!n,n,(prime(A005811(n))*A286468(n))-1);
    
  • Scheme
    (define (A075157 n) (if (zero? n) n (+ -1 (* (A000040 (A005811 n)) (fold-left (lambda (a r) (* (A003961 a) (A000079 (- r 1)))) 1 (binexp->runcount1list n))))))
    (define (binexp->runcount1list n) (if (zero? n) (list) (let loop ((n n) (rc (list)) (count 0) (prev-bit (modulo n 2))) (if (zero? n) (cons count rc) (if (eq? (modulo n 2) prev-bit) (loop (floor->exact (/ n 2)) rc (1+ count) (modulo n 2)) (loop (floor->exact (/ n 2)) (cons count rc) 1 (modulo n 2)))))))
    ;; Or, using the code of A286468:
    (define (A075157 n) (if (zero? n) n (- (* (A000040 (A005811 n)) (A286468 n)) 1)))

Formula

a(n) = A075159(n+1) - 1.
a(0) = 0; for n >= 1, a(n) = (A000040(A005811(n)) * A286468(n)) - 1.
Other identities. For all n >= 1:
a(A000975(n)) = A006093(n) = A000040(n)-1.

Extensions

Entry revised, PARI-program added and the old incorrect Scheme-program replaced with a new one by Antti Karttunen, May 17 2017

A286468 Run lengths in the binary expansion of n are one more than the exponents of corresponding primes in the prime factorization of a(n).

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 4, 4, 3, 1, 2, 6, 5, 9, 8, 8, 9, 5, 6, 2, 1, 3, 4, 12, 15, 7, 10, 18, 25, 27, 16, 16, 27, 25, 18, 10, 7, 15, 12, 4, 3, 1, 2, 6, 5, 9, 8, 24, 45, 35, 30, 14, 11, 21, 20, 36, 75, 49, 50, 54, 125, 81, 32, 32, 81, 125, 54, 50, 49, 75, 36, 20, 21, 11, 14, 30, 35, 45, 24, 8, 9, 5, 6, 2, 1, 3, 4, 12, 15, 7, 10, 18, 25, 27, 16, 48, 135, 175, 90, 70
Offset: 1

Views

Author

Antti Karttunen, May 17 2017

Keywords

Examples

			For n = 25, "11001" in binary, the lengths of runs from the right are 1, 2 and 2, thus we form a product prime(1)^(1-1) * prime(2)^(2-1) * prime(3)^(2-1) = 2^0 * 3^1 * 5^1 = 15, and a(26) = 15.
		

Crossrefs

Cf. A000975 (positions of ones).

Programs

  • PARI
    A286468(n) = { my(p=((n+1)%2), i=0, m=1); while(n>0, if(((n%2)==p), m *= prime(i), p = (n%2); i = i+1); n = n\2); m };
    
  • Scheme
    (define (A286468 n) (fold-left (lambda (a r) (* (A003961 a) (A000079 (- r 1)))) 1 (binexp->runcount1list n)))
    (define (binexp->runcount1list n) (if (zero? n) (list) (let loop ((n n) (rc (list)) (count 0) (prev-bit (modulo n 2))) (if (zero? n) (cons count rc) (if (eq? (modulo n 2) prev-bit) (loop (floor->exact (/ n 2)) rc (1+ count) (modulo n 2)) (loop (floor->exact (/ n 2)) (cons count rc) 1 (modulo n 2)))))))
    ;; Or by implementing the given recurrence:
    (define (A286468 n) (cond ((= 1 n) n) ((zero? (modulo n 4)) (* 2 (A286468 (/ n 2)))) ((= 1 (modulo n 4)) (A003961 (A286468 (/ (- n 1) 2)))) ((= 2 (modulo n 4)) (A003961 (A286468 (/ n 2)))) ((= 3 (modulo n 4)) (* 2 (A286468 (/ (- n 1) 2))))))

Formula

a(1) = 1; and then after, a(4n) = 2*a(2n), a(4n+1) = A003961(a((n-1)/2)), a(4n+2) = A003961(a(n/2)), a(4n+3) = 2*a((n-1)/2).
a(n) = A052126(1+A075157(n)) = A052126(A075159(1+n)).
Other identities. For all n >= 1:
a(A007283(n)) = A007283(n-1).

A227351 Permutation of nonnegative integers: map each number by lengths of runs of zeros in its Zeckendorf expansion shifted once left to the number which has the same lengths of runs (in the same order, but alternatively of runs of 0's and 1's) in its binary representation.

Original entry on oeis.org

0, 1, 3, 7, 2, 15, 6, 4, 31, 14, 12, 8, 5, 63, 30, 28, 24, 13, 16, 9, 11, 127, 62, 60, 56, 29, 48, 25, 27, 32, 17, 19, 23, 10, 255, 126, 124, 120, 61, 112, 57, 59, 96, 49, 51, 55, 26, 64, 33, 35, 39, 18, 47, 22, 20, 511, 254, 252, 248, 125, 240, 121, 123, 224
Offset: 0

Views

Author

Antti Karttunen, Jul 08 2013

Keywords

Comments

This permutation is based on the fact that by appending one extra zero to the right of Fibonacci number representation of n (aka "Zeckendorf expansion") and then counting the lengths of blocks of consecutive (nonleading) zeros we get bijective correspondence with compositions, and thus also with the binary representation of a unique n. See the chart below:
n A014417(n) A014417(A022342(n+1)) Runs of Binary number In dec.
[shifted once left] zeros with same runs = a(n)
0: ......0 ......0 [] .....0 0
1: ......1 .....10 [1] .....1 1
2: .....10 ....100 [2] ....11 3
3: ....100 ...1000 [3] ...111 7
4: ....101 ...1010 [1,1] ....10 2
5: ...1000 ..10000 [4] ..1111 15
6: ...1001 ..10010 [2,1] ...110 6
7: ...1010 ..10100 [1,2] ...100 4
8: ..10000 .100000 [5] .11111 31
9: ..10001 .100010 [3,1] ..1110 14
10: ..10010 .100100 [2,2] ..1100 12
11: ..10100 .101000 [1,3] ..1000 8
12: ..10101 .101010 [1,1,1] ...101 5
13: .100000 1000000 [6] 111111 63
Are there any other fixed points after 0, 1, 6, 803, 407483 ?

Crossrefs

Inverse permutation: A227352. Cf. also A003714, A014417, A006068, A048679.
Could be further composed with A075157 or A075159, also A129594.

Programs

Formula

a(n) = A006068(A048679(n)) = A006068(A106151(2*A003714(n))).
This permutation effects following correspondences:
a(A000045(n)) = A000225(n-1).
a(A027941(n)) = A000975(n).
For n >=3, a(A000204(n)) = A000079(n-2).

A075160 Prime factorization of n encoded with the run lengths of binary expansion + 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 11, 8, 7, 12, 22, 9, 43, 21, 10, 16, 86, 13, 171, 24, 23, 44, 342, 17, 14, 85, 15, 41, 683, 20, 1366, 32, 42, 172, 19, 25, 2731, 341, 87, 48, 5462, 45, 10923, 88, 18, 684, 21846, 33, 27, 28, 170, 169, 43691, 29, 46, 81, 343, 1365, 87382, 40, 174763
Offset: 1

Views

Author

Antti Karttunen, Sep 13 2002

Keywords

Comments

See the comment at A075158.

Examples

			a(9) = 7 = 1+6 (1 + 110) as 9 = 3^2 * 2^(1-1). (The run lengths of 6, 110 in binary are 2 and 1).
		

Crossrefs

Inverse of A075159. a(n) = A075158(n-1)+1.
Showing 1-6 of 6 results.