cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A245454 Self-inverse permutation of nonnegative integers, A075158-conjugate of blue code: a(n) = 1 + A075157(A193231(A075158(n-1))).

Original entry on oeis.org

1, 2, 4, 3, 6, 5, 18, 8, 9, 25, 11, 16, 64, 14, 27, 12, 96, 7, 288, 21, 20, 243, 891, 45, 10, 405, 15, 162, 33750, 30, 78650, 75, 625, 2025, 35, 81, 390390, 224, 875, 250, 41, 375, 16384, 270, 24, 300125, 24576, 150, 125, 54, 6125, 1350, 73728, 50, 108, 350, 594, 140777, 5845851, 98, 221433750, 1446445, 343, 13
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2014

Keywords

Crossrefs

Programs

Formula

a(n) = 1 + A075157(A193231(A075158(n-1))).

A278217 Filter-sequence related to base-2 run-length encoding: a(n) = A046523(A075159(1+n)) = A046523(1+A075157(n)).

Original entry on oeis.org

1, 2, 2, 4, 6, 2, 4, 8, 12, 6, 2, 6, 12, 4, 8, 16, 24, 12, 6, 30, 6, 2, 6, 12, 36, 12, 4, 12, 24, 8, 16, 32, 48, 24, 12, 60, 30, 6, 30, 60, 12, 6, 2, 6, 30, 6, 12, 24, 72, 36, 12, 60, 12, 4, 12, 36, 72, 24, 8, 24, 48, 16, 32, 64, 96, 48, 24, 120, 60, 12, 60, 180, 60, 30, 6, 30, 210, 30, 60, 120, 24, 12, 6, 30, 6, 2, 6, 12, 60, 30, 6, 30, 60, 12, 24, 48, 144, 72
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Crossrefs

Cf. A046523, A075157, A075159, A286617 (rgs-version of this filter).
Other base-2 related filter sequences: A278219, A278222.
Sequences that partition N into same or coarser equivalence classes are at least these: A092339, A227185.

Programs

Formula

a(n) = A046523(1+A075157(n)) = A046523(A075159(1+n)).

A245451 Self-inverse permutation of nonnegative integers, A075158-conjugate of gray code: a(n) = 1 + A075157(A003188(A075158(n-1))).

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 16, 6, 5, 27, 32, 18, 64, 81, 25, 12, 128, 7, 256, 54, 125, 243, 512, 36, 10, 729, 15, 162, 1024, 49, 2048, 24, 625, 2187, 50, 14, 4096, 6561, 3125, 108, 8192, 343, 16384, 486, 75, 19683, 32768, 72, 20, 21, 15625, 1458, 65536, 35, 250, 324, 78125, 59049, 131072, 98, 262144, 177147, 375, 48
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2014

Keywords

Crossrefs

Inverse: A245452.
Similar permutations: A245454, A122111, A241909, A241916.

Programs

Formula

a(n) = 1 + A075157(A003188(A075158(n-1))).

A245452 Self-inverse permutation of nonnegative integers, A075158-conjugate of the inverse of gray code: a(n) = 1 + A075157(A006068(A075158(n-1))).

Original entry on oeis.org

1, 2, 4, 3, 9, 8, 18, 5, 6, 25, 75, 16, 150, 36, 27, 7, 735, 12, 1470, 49, 50, 245, 12705, 32, 15, 300, 10, 72, 25410, 125, 195195, 11, 225, 4235, 54, 24, 390390, 2940, 490, 121, 4339335, 100, 8678670, 847, 81, 65065, 92147055, 64, 30, 35, 2205, 600, 184294110, 20, 147, 144, 8470, 50820, 2565568005, 343, 5131136010, 1446445, 98, 13
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2014

Keywords

Crossrefs

Inverse: A245451.
Similar permutations: A245454, A122111, A241909, A241916.

Programs

Formula

a(n) = 1 + A075157(A006068(A075158(n-1))).

A122111 Self-inverse permutation of the positive integers induced by partition enumeration in A112798 and partition conjugation.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 10, 64, 24, 18, 7, 128, 15, 256, 20, 36, 48, 512, 14, 27, 96, 25, 40, 1024, 30, 2048, 11, 72, 192, 54, 21, 4096, 384, 144, 28, 8192, 60, 16384, 80, 50, 768, 32768, 22, 81, 45, 288, 160, 65536, 35, 108, 56, 576, 1536, 131072, 42
Offset: 1

Views

Author

Keywords

Comments

Factor n; replace each prime(i) with i, take the conjugate partition, replace parts i with prime(i) and multiply out.
From Antti Karttunen, May 12-19 2014: (Start)
For all n >= 1, A001222(a(n)) = A061395(n), and vice versa, A061395(a(n)) = A001222(n).
Because the partition conjugation doesn't change the partition's total sum, this permutation preserves A056239, i.e., A056239(a(n)) = A056239(n) for all n.
(Similarly, for all n, A001221(a(n)) = A001221(n), because the number of steps in the Ferrers/Young-diagram stays invariant under the conjugation. - Note added Apr 29 2022).
Because this permutation commutes with A241909, in other words, as a(A241909(n)) = A241909(a(n)) for all n, from which follows, because both permutations are self-inverse, that a(n) = A241909(a(A241909(n))), it means that this is also induced when partitions are conjugated in the partition enumeration system A241918. (Not only in A112798.)
(End)
From Antti Karttunen, Jul 31 2014: (Start)
Rows in arrays A243060 and A243070 converge towards this sequence, and also, assuming no surprises at the rate of that convergence, this sequence occurs also as the central diagonal of both.
Each even number is mapped to a unique term of A102750 and vice versa.
Conversely, each odd number (larger than 1) is mapped to a unique term of A070003, and vice versa. The permutation pair A243287-A243288 has the same property. This is also used to induce the permutations A244981-A244984.
Taking the odd bisection and dividing out the largest prime factor results in the permutation A243505.
Shares with A245613 the property that each term of A028260 is mapped to a unique term of A244990 and each term of A026424 is mapped to a unique term of A244991.
Conversely, with A245614 (the inverse of above), shares the property that each term of A244990 is mapped to a unique term of A028260 and each term of A244991 is mapped to a unique term of A026424.
(End)
The Maple program follows the steps described in the first comment. The subprogram C yields the conjugate partition of a given partition. - Emeric Deutsch, May 09 2015
The Heinz number of the partition that is conjugate to the partition with Heinz number n. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r). Example: a(3) = 4. Indeed, the partition with Heinz number 3 is [2]; its conjugate is [1,1] having Heinz number 4. - Emeric Deutsch, May 19 2015

Crossrefs

Cf. A088902 (fixed points).
Cf. A112798, A241918 (conjugates the partitions listed in these two tables).
Cf. A243060 and A243070. (Limit of rows in these arrays, and also their central diagonal).
Cf. A319988 (parity of this sequence for n > 1), A336124 (a(n) mod 4).
{A000027, A122111, A241909, A241916} form a 4-group.
{A000027, A122111, A153212, A242419} form also a 4-group.
Cf. also array A350066 [A(i, j) = a(a(i)*a(j))].

Programs

  • Maple
    with(numtheory): c := proc (n) local B, C: B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: C := proc (P) local a: a := proc (j) local c, i: c := 0; for i to nops(P) do if j <= P[i] then c := c+1 else  end if end do: c end proc: [seq(a(k), k = 1 .. max(P))] end proc: mul(ithprime(C(B(n))[q]), q = 1 .. nops(C(B(n)))) end proc: seq(c(n), n = 1 .. 59); # Emeric Deutsch, May 09 2015
    # second Maple program:
    a:= n-> (l-> mul(ithprime(add(`if`(jAlois P. Heinz, Sep 30 2017
  • Mathematica
    A122111[1] = 1; A122111[n_] := Module[{l = #, m = 0}, Times @@ Power @@@ Table[l -= m; l = DeleteCases[l, 0]; {Prime@Length@l, m = Min@l}, Length@Union@l]] &@Catenate[ConstantArray[PrimePi[#1], #2] & @@@ FactorInteger@n]; Array[A122111, 60] (* JungHwan Min, Aug 22 2016 *)
    a[n_] := Function[l, Product[Prime[Sum[If[jJean-François Alcover, Sep 23 2020, after Alois P. Heinz *)
  • PARI
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m)); \\ Antti Karttunen, Jul 20 2020
    
  • Python
    from sympy import factorint, prevprime, prime, primefactors
    from operator import mul
    def a001222(n): return 0 if n==1 else a001222(n/primefactors(n)[0]) + 1
    def a064989(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a105560(n): return 1 if n==1 else prime(a001222(n))
    def a(n): return 1 if n==1 else a105560(n)*a(a064989(n))
    [a(n) for n in range(1, 101)] # Indranil Ghosh, Jun 15 2017
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (A000040 (A001222 n)) (A122111 (A064989 n)))))
    ;; Antti Karttunen, May 12 2014
    
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (A000079 (A241917 n)) (A003961 (A122111 (A052126 n))))))
    ;; Antti Karttunen, May 12 2014
    
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (expt (A000040 (A071178 n)) (A241919 n)) (A242378bi (A071178 n) (A122111 (A051119 n))))))
    ;; Antti Karttunen, May 12 2014
    

Formula

From Antti Karttunen, May 12-19 2014: (Start)
a(1) = 1, a(p_i) = 2^i, and for other cases, if n = p_i1 * p_i2 * p_i3 * ... * p_{k-1} * p_k, where p's are primes, not necessarily distinct, sorted into nondescending order so that i1 <= i2 <= i3 <= ... <= i_{k-1} <= ik, then a(n) = 2^(ik-i_{k-1}) * 3^(i_{k-1}-i_{k-2}) * ... * p_{i_{k-1}}^(i2-i1) * p_ik^(i1).
This can be implemented as a recurrence, with base case a(1) = 1,
and then using any of the following three alternative formulas:
a(n) = A105560(n) * a(A064989(n)) = A000040(A001222(n)) * a(A064989(n)). [Cf. the formula for A242424.]
a(n) = A000079(A241917(n)) * A003961(a(A052126(n))).
a(n) = (A000040(A071178(n))^A241919(n)) * A242378(A071178(n), a(A051119(n))). [Here ^ stands for the ordinary exponentiation, and the bivariate function A242378(k,n) changes each prime p(i) in the prime factorization of n to p(i+k), i.e., it's the result of A003961 iterated k times starting from n.]
a(n) = 1 + A075157(A129594(A075158(n-1))). [Follows from the commutativity with A241909, please see the comments section.]
(End)
From Antti Karttunen, Jul 31 2014: (Start)
As a composition of related permutations:
a(n) = A153212(A242419(n)) = A242419(A153212(n)).
a(n) = A241909(A241916(n)) = A241916(A241909(n)).
a(n) = A243505(A048673(n)).
a(n) = A064216(A243506(n)).
Other identities. For all n >= 1, the following holds:
A006530(a(n)) = A105560(n). [The latter sequence gives greatest prime factor of the n-th term].
a(2n)/a(n) = A105560(2n)/A105560(n), which is equal to A003961(A105560(n))/A105560(n) when n > 1.
A243505(n) = A052126(a(2n-1)) = A052126(a(4n-2)).
A066829(n) = A244992(a(n)) and vice versa, A244992(n) = A066829(a(n)).
A243503(a(n)) = A243503(n). [Because partition conjugation does not change the partition size.]
A238690(a(n)) = A238690(n). - per Matthew Vandermast's note in that sequence.
A238745(n) = a(A181819(n)) and a(A238745(n)) = A181819(n). - per Matthew Vandermast's note in A238745.
A181815(n) = a(A181820(n)) and a(A181815(n)) = A181820(n). - per Matthew Vandermast's note in A181815.
(End)
a(n) = A181819(A108951(n)). [Prime shadow of the primorial inflation of n] - Antti Karttunen, Apr 29 2022

A227183 a(n) is the sum of parts of the unique unordered partition encoded in the run lengths of the binary expansion of n; row sums of A227739 for n >= 1.

Original entry on oeis.org

0, 1, 2, 2, 4, 3, 3, 3, 6, 5, 4, 6, 5, 4, 4, 4, 8, 7, 6, 8, 8, 5, 7, 9, 7, 6, 5, 7, 6, 5, 5, 5, 10, 9, 8, 10, 10, 7, 9, 11, 12, 9, 6, 10, 11, 8, 10, 12, 9, 8, 7, 9, 9, 6, 8, 10, 8, 7, 6, 8, 7, 6, 6, 6, 12, 11, 10, 12, 12, 9, 11, 13, 14, 11, 8, 12, 13, 10, 12, 14
Offset: 0

Views

Author

Antti Karttunen, Jul 05 2013

Keywords

Comments

Like A129594 this sequence utilizes the fact that compositions (i.e., ordered partitions) can be bijectively mapped to (unordered) partitions by taking the partial sums of the list of composants after one has been subtracted from each except the first one. Compositions in turn are mapped to nonnegative integers via the runlength encoding, where the lengths of maximum runs of 0's or 1's in binary representation of n give the composants. See the OEIS Wiki page and the example below.
Each n occurs A000041(n) times in total and occurs for the first time at A227368(n) and for the last time at position A000225(n). See further comments and conjectures at A227368 and A227370.

Examples

			19 has binary expansion "10011", thus the maximal runs of identical bits (scanned from right to left) are [2,2,1]. We subtract one from each after the first one, to get [2,1,0] and then form their partial sums as [2,2+1,2+1+0], which thus maps to unordered partition {2+3+3} which adds to 8. Thus a(19)=8.
		

Crossrefs

Row sums of A227189 and A227739. Cf. A227184 (corresponding products), A227185, A227189, A227192, A129594, A226062, A227368.
Analogous sum sequences computed for other encoding schemes of unordered partitions: A036042, A056239, A161511, A243503. Cf. also A229119, A003188, A075157, A243353 (associated permutations mapping between these schemes).

Programs

  • Mathematica
    Table[Function[b, Total@ Accumulate@ Prepend[If[Length@ b > 1, Rest[b] - 1, {}], First@ b] - Boole[n == 0]]@ Map[Length, Split@ Reverse@ IntegerDigits[n, 2]], {n, 0, 79}] // Flatten (* Michael De Vlieger, May 09 2017 *)
  • Python
    def A227183(n):
      '''Sum of parts of the unique unordered partition encoded in the run lengths of the binary expansion of n.'''
      s = 0
      b = n%2
      i = 1
      while (n != 0):
        n >>= 1
        if ((n%2) == b): # Staying in the same run of bits?
          i += 1
        else: # The run changes.
          b = n%2
          s += i
      return(s)

Formula

a(n) = Sum_{i=0..A005811(n)-1} A227189(n,i). [The defining formula]
Equivalently, for n>=1, a(n) = Sum_{i=(A173318(n-1)+1)..A173318(n)} A227739(i).
a(n) = A227192(n) - A000217(A005811(n)-1).
Other identities:
a(A129594(n)) = a(n). [This follows from the fact that conjugating a partition doesn't change its total sum]
a(A226062(n)) = a(n). [Which is also true for the "Bulgarian operation"]
From Antti Karttunen, Mar 08 2015: (Start)
Can be also obtained by mapping with an appropriate permutation from the sequences giving sizes of each partition (i.e., sum of their parts) computed for other enumerations similar to A227739:
a(n) = A036042(A229119(n)).
a(n) = A161511(A003188(n)).
a(n) = A056239(A243353(n)).
a(n) = A243503(1+A075157(n)).
(End)

A129594 Involution of nonnegative integers induced by the conjugation of the partition encoded in the run lengths of binary expansion of n.

Original entry on oeis.org

0, 1, 3, 2, 4, 7, 6, 5, 11, 12, 15, 8, 9, 14, 13, 10, 20, 27, 28, 19, 16, 31, 24, 23, 22, 25, 30, 17, 18, 29, 26, 21, 43, 52, 59, 36, 35, 60, 51, 44, 47, 48, 63, 32, 39, 56, 55, 40, 41, 54, 57, 38, 33, 62, 49, 46, 45, 50, 61, 34, 37, 58, 53, 42, 84, 107, 116, 75, 68, 123
Offset: 0

Views

Author

Antti Karttunen, May 01 2007

Keywords

Comments

This sequence is based on the fact that compositions (i.e. ordered partitions) can be mapped 1-to-1 to partitions by taking the partial sums of the list where one is subtracted from each composant except the first. (See table A227189 where the parts for each partition are listed).
The inverse process, from partitions to compositions, occurs by inserting the first (i.e. smallest) element of a partition sorted into ascending order to the front of the list obtained by adding one to the first differences of the elements.
Compositions map bijectively to nonnegative integers by assigning each run of k consecutive 1's (or 0's) in binary expansion of n with summand k in the composition.
The graph of this sequence is quite interesting.

Examples

			a(8) = 11, as 8 is 1000 in binary, mapping to composition 3+1 (we scan the binary expansion from the least to the most significant end), which maps to partition 3+3, whose conjugate-partition is 2+2+2, yielding composition 2+1+1, which maps to binary 1011, 11 in decimal. a(13) = 14, as 13 is 1101 in binary, mapping to composition 1+1+2, which maps to the partition 1+1+2, whose conjugate-partition is 1+3, yielding composition 1+3, which maps to binary 1110, 14 in decimal. a(11) = 8 and a(14) = 13, as taking the conjugate of a partition is a self-inverse operation.
		

Crossrefs

a(n) = A075158(A122111(1+A075157(n)) - 1). See A129595 for another kind of encoding of integer partitions.
Sequences related to partitions encoded in this way:
Cf. A227189 (parts of partitions listed on separate rows of the array).
Cf. A005811 (number of parts in the partition).
Cf. A136480 (for n>= 1, the smallest part).
Cf. A227185 (the largest part).
Cf. A227183 (sum of parts).
Cf. A227184 (product of parts).
Note that this permutation maps between A005811 and A227185 as follows: A005811(n) = A227185(a(n)) and vice versa: A227185(n) = A005811(a(n)). On the other hand, it keeps A227183 fixed, as A227183(n) = A227183(a(n)).
Cf. also A226062.

A075158 Prime factorization of n+1 encoded with the run lengths of binary expansion.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 10, 7, 6, 11, 21, 8, 42, 20, 9, 15, 85, 12, 170, 23, 22, 43, 341, 16, 13, 84, 14, 40, 682, 19, 1365, 31, 41, 171, 18, 24, 2730, 340, 86, 47, 5461, 44, 10922, 87, 17, 683, 21845, 32, 26, 27, 169, 168, 43690, 28, 45, 80, 342, 1364, 87381, 39, 174762
Offset: 0

Views

Author

Antti Karttunen, Sep 13 2002

Keywords

Comments

a(2n) = 1 or 2 mod 4 and a(2n+1) = 0 or 3 mod 4 for all n > 1

Examples

			a(1) = 1 as 2 = 2^1, a(2) = 2 (10 in binary) as 3 = 3^1 * 2^0, a(3) = 3 (11) as 4 = 2^2, a(4) = 5 (101) as 5 = 5^1 * 3^0 * 2^0, a(5) = 4 (100) as 6 = 3^1 * 2^1, a(8) = 6 (110) as 9 = 3^2 * 2^0, a(11) = 8 (1000) as 12 = 3^1 * 2^2, a(89) = 35 (100011) as 90 = 5^1 * 3^2 * 2^1, a(90) = 90 (1011010) as 91 = 13^1 * 11^0 * 7^1 * 5^0 * 3^0 * 2^0.
The binary expansion of a(n) begins from the left with as many 1's as is the exponent of the largest prime present in the factorization of n+1 and from then on follows runs of ej+1 zeros and ones alternatively, where ej are the corresponding exponents of the successively lesser primes (0 if that prime does not divide n+1).
		

Crossrefs

Inverse of A075157. a(n) = A075160(n+1)-1. a(A006093(n)) = A000975(n). Cf. A059884.

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a075158 = fromJust . (`elemIndex` a075157_list)
    -- Reinhard Zumkeller, Aug 04 2014

A278219 Filter-sequence related to base-2 run-length encoding: a(n) = A046523(A243353(n)).

Original entry on oeis.org

1, 2, 4, 2, 4, 8, 6, 2, 4, 12, 16, 8, 6, 12, 6, 2, 4, 12, 36, 12, 16, 32, 24, 8, 6, 30, 24, 12, 6, 12, 6, 2, 4, 12, 36, 12, 36, 72, 60, 12, 16, 48, 64, 32, 24, 72, 24, 8, 6, 30, 60, 30, 24, 48, 60, 12, 6, 30, 24, 12, 6, 12, 6, 2, 4, 12, 36, 12, 36, 72, 60, 12, 36, 180, 144, 72, 60, 180, 60, 12, 16, 48, 144, 48, 64, 128, 96, 32, 24, 120, 216, 72, 24, 72
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Crossrefs

Other base-2 related filter sequences: A278217, A278222.
Sequences that (seem to) partition N into same or coarser equivalence classes are at least these: A005811, A136004, A033264, A037800, A069010, A087116, A090079 and many others like A105500, A106826, A166242, A246960, A277561, A037834, A225081 although these have not been fully checked yet.

Programs

  • Mathematica
    f[n_, i_, x_] := Which[n == 0, x, EvenQ@ n, f[n/2, i + 1, x], True, f[(n - 1)/2, i, x Prime@ i]]; g[n_] := If[n == 1, 1, Times @@ MapIndexed[ Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]]];
    Table[g@ f[BitXor[n, Floor[n/2]], 1, 1], {n, 0, 93}] (* Michael De Vlieger, May 09 2017 *)
  • Python
    from sympy import prime, factorint
    import math
    def A(n): return n - 2**int(math.floor(math.log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    def a005940(n): return b(n - 1)
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a003188(n): return n^int(n/2)
    def a243353(n): return a005940(1 + a003188(n))
    def a(n): return a046523(a243353(n)) # Indranil Ghosh, May 07 2017
  • Scheme
    (define (A278219 n) (A046523 (A243353 n)))
    

Formula

a(n) = A046523(A243353(n)).
a(n) = A278222(A003188(n)).
a(n) = A278220(1+A075157(n)).

A226062 a(n) = Bulgarian solitaire operation applied to the partition encoded in the runlengths of binary expansion of n.

Original entry on oeis.org

0, 1, 3, 2, 13, 7, 6, 6, 11, 29, 15, 58, 9, 14, 4, 14, 19, 27, 61, 54, 245, 31, 122, 52, 27, 25, 30, 50, 25, 12, 12, 30, 35, 23, 59, 46, 237, 125, 118, 44, 235, 501, 63, 1002, 233, 250, 116, 40, 51, 19, 57, 38, 229, 62, 114, 36, 59, 17, 28, 34, 57, 8, 28, 62
Offset: 0

Views

Author

Antti Karttunen, Jul 06 2013

Keywords

Comments

For this sequence the partitions are encoded in the binary expansion of n in the same way as in A129594.
In "Bulgarian solitaire" a deck of cards or another finite set of objects is divided into one or more piles, and the "Bulgarian operation" is performed by taking one card from each pile, and making a new pile of them. The question originally posed was: on what condition the resulting partitions will eventually reach a fixed point, that is, a collection of piles that will be unchanged by the operation. See Martin Gardner reference and the Wikipedia-page.
A037481 gives the fixed points of this sequence, which are numbers that encode triangular partitions: 1 + 2 + 3 + ... + n.
A227752(n) tells how many times n occurs in this sequence, and A227753 gives the terms that do not occur here.
Of further interest: among each A000041(n) numbers j_i: j1, j2, ..., jk for which A227183(j_i)=n, how many cycles occur and what is the size of the largest one? (Both are 1 when n is in A000217, as then the fixed points are the only cycles.) Cf. A185700, A188160.
Also, A123975 answers how many Garden of Eden partitions there are for the deck of size n in Bulgarian Solitaire, corresponding to values that do not occur as the terms of this sequence.

Examples

			5 has binary expansion "101", whose runlengths are [1,1,1], which are converted to nonordered partition {1+1+1}.
6 has binary expansion "110", whose runlengths are [1,2] (we scan the runs of bits from right to left), which are converted to nonordered partition {1+2}.
7 has binary expansion "111", whose list of runlengths is [3], which is converted to partition {3}.
In "Bulgarian Operation" we subtract one from each part (with 1-parts vanishing), and then add a new part of the same size as there originally were parts, so that the total sum stays same.
Thus starting from a partition encoded by 5, {1,1,1} the operation works as 1-1, 1-1, 1-1 (all three 1's vanish) but appends part 3 as there originally were three parts, thus we get a new partition {3}. Thus a(5)=7.
From the partition {3} -> 3-1 and 1, which gives a new partition {1,2}, so a(7)=6.
For partition {1+2} -> 1-1 and 2-1, thus the first part vanishes, and the second is now 1, to which we add the new part 2, as there were two parts originally, thus {1+2} stays as {1+2}, and we have reached a fixed point, a(6)=6.
		

References

  • Martin Gardner, Colossal Book of Mathematics, Chapter 34, Bulgarian Solitaire and Other Seemingly Endless Tasks, pp. 455-467, W. W. Norton & Company, 2001.

Crossrefs

Cf. A037481 (gives the fixed points).
Cf. A227752 (how many times n occurs here).
Cf. A227753 (numbers that do not occur here).
Cf. A129594 (conjugates the partitions encoded with the same system).

Formula

Other identities:
A227183(a(n)) = A227183(n). [This operation doesn't change the total sum of the partition.]
a(n) = A243354(A242424(A243353(n))).
a(n) = A075158(A243051(1+A075157(n))-1).
Showing 1-10 of 20 results. Next