A227452 Irregular table where each row lists the partitions occurring on the main trunk of the Bulgarian Solitaire game tree (from the top to the root) for deck of n(n+1)/2 cards. Nonordered partitions are encoded in the runlengths of binary expansion of each term, in the manner explained in A129594.
0, 1, 5, 7, 6, 18, 61, 8, 11, 58, 28, 25, 77, 246, 66, 55, 36, 237, 226, 35, 46, 116, 197, 115, 102, 306, 985, 265, 445, 200, 155, 946, 905, 285, 220, 145, 475, 786, 925, 140, 185, 465, 395, 826, 460, 409, 1229, 3942, 1062, 1782, 1602, 823, 612, 3789, 3622, 1142
Offset: 0
Examples
Rows 0 - 5 of the table are: 0 1 5, 7, 6 18, 61, 8, 11, 58, 28, 25 77, 246, 66, 55, 36, 237, 226, 35, 46, 116, 197, 115, 102 306, 985, 265, 445, 200, 155, 946, 905, 285, 220, 145, 475, 786, 925, 140, 185, 465, 395, 826, 460, 409
References
- Martin Gardner, Colossal Book of Mathematics, Chapter 34, Bulgarian Solitaire and Other Seemingly Endless Tasks, pp. 455-467, W. W. Norton & Company, 2001.
Links
- Antti Karttunen, Rows 0-31 of table, flattened
Programs
-
Scheme
;; with Antti Karttunen's IntSeq-library for memoizing definec-macro ;; Compare with the other definition for A218616: (definec (A227452 n) (cond ((< n 2) n) ((A226062 (A227452 (- n 1))) => (lambda (next) (if (= next (A227452 (- n 1))) (A227451 (A227177 (+ 1 n))) next))))) ;; Alternative implementation using nested cached closures for function iteration: (define (A227452 n) ((compose-A226062-to-n-th-power (A227179 n)) (A227451 (A227177 n)))) (definec (compose-A226062-to-n-th-power n) (cond ((zero? n) (lambda (x) x)) (else (lambda (x) (A226062 ((compose-A226062-to-n-th-power (- n 1)) x))))))
Comments