cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A037481 Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.

Original entry on oeis.org

0, 1, 6, 25, 102, 409, 1638, 6553, 26214, 104857, 419430, 1677721, 6710886, 26843545, 107374182, 429496729, 1717986918, 6871947673, 27487790694, 109951162777, 439804651110, 1759218604441, 7036874417766, 28147497671065
Offset: 0

Views

Author

Keywords

Comments

The terms have a particular pattern in their binary expansion, which encodes for a "triangular partition" when runlength encoding of unordered partitions are used (please see A129594 for how that encoding works).
n a(n) same in binary run lengths unordered partition
0 0 0 [] {}
1 1 1 [1] {1}
2 6 110 [2,1] {1+2}
3 25 11001 [2,2,1] {1+2+3}
4 102 1100110 [2,2,2,1] {1+2+3+4}
5 409 110011001 [2,2,2,2,1] {1+2+3+4+5}
6 1638 11001100110 [2,2,2,2,2,1] {1+2+3+4+5+6}
7 6553 1100110011001 [2,2,2,2,2,2,1] {1+2+3+4+5+6+7}
8 26214 110011001100110 [2,2,2,2,2,2,2,1] {1+2+3+4+5+6+7+8}
9 104857 11001100110011001 [2,2,2,2,2,2,2,2,1] {1+2+3+4+5+6+7+8+9}
These partitions are the only fixed points of "Bulgarian Solitaire" operation (see Gardner reference or Wikipedia page), and thus the terms of this sequence give the fixed points for A226062 which implements that operation (using the same encoding for partitions). This also implies that these partitions are the roots of the game trees constructed for decks consisting of 1+2+3+...+k cards. See A227451 for the encoding of the corresponding tops of the main trunks of the same trees. - Antti Karttunen, Jul 12 2013

References

  • Martin Gardner, Colossal Book of Mathematics, Chapter 34, Bulgarian Solitaire and Other Seemingly Endless Tasks, pp. 455-467, W. W. Norton & Company, 2001.

Crossrefs

Cf. A037487 (decimal digits 1,2).
The right edge of the table A227452. The fixed points of A226062.

Programs

  • Magma
    I:=[0, 1, 6]; [n le 3 select I[n] else 4*Self(n-1)+Self(n-2)-4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 21 2012
    
  • Mathematica
    LinearRecurrence[{4,1,-4},{0,1,6},40] (* Vincenzo Librandi, Jun 21 2012 *)
    Module[{nn=30,ps},ps=PadRight[{},nn,{1,2}];Table[FromDigits[Take[ps,n],4],{n,0,nn}]] (* Harvey P. Dale, Jul 18 2013 *)
  • PARI
    concat(0, Vec(x*(2*x+1)/((x-1)*(x+1)*(4*x-1)) + O(x^100))) \\ Colin Barker, Apr 30 2014
    
  • PARI
    a(n) = 2<<(2*n) \ 5; \\ Kevin Ryde, Jun 24 2023
    
  • Python
    def A037481(n): return (1<<(n<<1|1))//5 # Chai Wah Wu, Jun 28 2023
  • Scheme
    (define (A037481 n) (/ (- (/ (+ (expt 4 (1+ n)) (expt -1 n)) 5) 1) 2)) ;; Using Ralf Stephan's direct formula - Antti Karttunen, Jul 12 2013
    

Formula

a(n) = ((4^(n+1) - (-1)^(n+1))/5 - 1)/2. - Ralf Stephan
a(n) = 4*a(n-1) + a(n-2) - 4*a(n-3). - Vincenzo Librandi, Jun 21 2012
a(n) = A226062(A129594(A227451(n))). [See page 465 in Gardner's book] - Antti Karttunen, Jul 12 2013
G.f.: x*(2*x+1) / ((x-1)*(x+1)*(4*x-1)). - Colin Barker, Apr 30 2014

A243353 Permutation of natural numbers which maps between the partitions as encoded in A227739 (binary based system, zero-based) to A112798 (prime-index based system, one-based).

Original entry on oeis.org

1, 2, 4, 3, 9, 8, 6, 5, 25, 18, 16, 27, 15, 12, 10, 7, 49, 50, 36, 75, 81, 32, 54, 125, 35, 30, 24, 45, 21, 20, 14, 11, 121, 98, 100, 147, 225, 72, 150, 245, 625, 162, 64, 243, 375, 108, 250, 343, 77, 70, 60, 105, 135, 48, 90, 175, 55, 42, 40, 63, 33, 28, 22, 13, 169, 242, 196, 363, 441, 200, 294, 605, 1225, 450, 144
Offset: 0

Views

Author

Antti Karttunen, Jun 05 2014

Keywords

Comments

Note the indexing: the domain includes zero, but the range starts from one.

Crossrefs

A243354 gives the inverse mapping.

Programs

  • Mathematica
    f[n_, i_, x_] := Which[n == 0, x, EvenQ@ n, f[n/2, i + 1, x], True, f[(n - 1)/2, i, x Prime@ i]]; Table[f[BitXor[n, Floor[n/2]], 1, 1], {n, 0, 74}] (* Michael De Vlieger, May 09 2017 *)
  • Python
    from sympy import prime
    import math
    def A(n): return n - 2**int(math.floor(math.log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    def a005940(n): return b(n - 1)
    def a003188(n): return n^int(n/2)
    def a243353(n): return a005940(1 + a003188(n)) # Indranil Ghosh, May 07 2017
  • Scheme
    (define (A243353 n) (A005940 (+ 1 (A003188 n))))
    

Formula

a(n) = A005940(1+A003188(n)).
a(n) = A241909(1+A075157(n)). [With A075157's original starting offset]
For all n >= 0, A243354(a(n)) = n.
A227183(n) = A056239(a(n)). [Maps between the corresponding sums ...]
A227184(n) = A003963(a(n)). [... and products of parts of each partition].
For n >= 0, a(A037481(n)) = A002110(n). [Also "triangular partitions", the fixed points of Bulgarian solitaire, A226062 & A242424].
For n >= 1, a(A227451(n+1)) = 4*A243054(n).

A227452 Irregular table where each row lists the partitions occurring on the main trunk of the Bulgarian Solitaire game tree (from the top to the root) for deck of n(n+1)/2 cards. Nonordered partitions are encoded in the runlengths of binary expansion of each term, in the manner explained in A129594.

Original entry on oeis.org

0, 1, 5, 7, 6, 18, 61, 8, 11, 58, 28, 25, 77, 246, 66, 55, 36, 237, 226, 35, 46, 116, 197, 115, 102, 306, 985, 265, 445, 200, 155, 946, 905, 285, 220, 145, 475, 786, 925, 140, 185, 465, 395, 826, 460, 409, 1229, 3942, 1062, 1782, 1602, 823, 612, 3789, 3622, 1142
Offset: 0

Views

Author

Antti Karttunen, Jul 12 2013

Keywords

Comments

The terms for row n are computed as A227451(n), A226062(A227451(n)), A226062(A226062(A227451(n))), etc. until a term that is a fixed point of A226062 is reached (A037481(n)), which will be the last term of row n.
Row n has A002061(n) = 1,1,3,7,13,21,... terms.

Examples

			Rows 0 - 5 of the table are:
0
1
5, 7, 6
18, 61, 8, 11, 58, 28, 25
77, 246, 66, 55, 36, 237, 226, 35, 46, 116, 197, 115, 102
306, 985, 265, 445, 200, 155, 946, 905, 285, 220, 145, 475, 786, 925, 140, 185, 465, 395, 826, 460, 409
		

References

  • Martin Gardner, Colossal Book of Mathematics, Chapter 34, Bulgarian Solitaire and Other Seemingly Endless Tasks, pp. 455-467, W. W. Norton & Company, 2001.

Crossrefs

Left edge A227451. Right edge: A037481. Cf. A227147 (can be computed from this sequence).

Programs

  • Scheme
    ;; with Antti Karttunen's IntSeq-library for memoizing definec-macro
    ;; Compare with the other definition for A218616:
    (definec (A227452 n) (cond ((< n 2) n) ((A226062 (A227452 (- n 1))) => (lambda (next) (if (= next (A227452 (- n 1))) (A227451 (A227177 (+ 1 n))) next)))))
    ;; Alternative implementation using nested cached closures for function iteration:
    (define (A227452 n) ((compose-A226062-to-n-th-power (A227179 n)) (A227451 (A227177 n))))
    (definec (compose-A226062-to-n-th-power n) (cond ((zero? n) (lambda (x) x)) (else (lambda (x) (A226062 ((compose-A226062-to-n-th-power (- n 1)) x))))))

Formula

For n < 2, a(n) = n, and for n>=2, if A226062(a(n-1)) = a(n-1) [in other words, when a(n-1) is one of the terms of A037481] then a(n) = A227451(A227177(n+1)), otherwise a(n) = A226062(a(n-1)).
Alternatively, a(n) = value of the A227179(n)-th iteration of the function A226062, starting from the initial value A227451(A227177(n)). [See the other Scheme-definition in the Program section]

A227753 Numbers which do not occur in A226062; numbers which encode Garden of Eden partitions in Bulgarian Solitaire in runlengths of their binary representation.

Original entry on oeis.org

5, 10, 18, 20, 21, 22, 26, 37, 41, 42, 43, 45, 53, 69, 73, 74, 75, 77, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 93, 101, 105, 106, 107, 109, 117, 138, 146, 148, 149, 150, 154, 162, 164, 165, 166, 168, 169, 170, 171, 172, 173, 174, 178, 180, 181, 182, 186, 202
Offset: 1

Views

Author

Antti Karttunen, Jul 26 2013

Keywords

Comments

Positions of zeros in A227752.
A225794 gives the sizes of the corresponding partitions.

Crossrefs

After its first two initial terms, all the terms of A227451 can be found in this sequence.
Showing 1-4 of 4 results.