A075193 Expansion of (1-2*x)/(1+x-x^2).
1, -3, 4, -7, 11, -18, 29, -47, 76, -123, 199, -322, 521, -843, 1364, -2207, 3571, -5778, 9349, -15127, 24476, -39603, 64079, -103682, 167761, -271443, 439204, -710647, 1149851, -1860498, 3010349, -4870847, 7881196, -12752043, 20633239, -33385282, 54018521, -87403803, 141422324
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (-1,1).
Programs
-
Haskell
a075193 n = a075193_list !! n a075193_list = 1 : -3 : zipWith (-) a075193_list (tail a075193_list) -- Reinhard Zumkeller, Sep 15 2015
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-2*x)/(1+x-x^2))); // Marius A. Burtea, Jan 12 2020 -
Maple
a:= n-> (Matrix([[1, -2]]). Matrix([[-1, 1], [1, 0]])^(n))[1, 1]: seq(a(n), n=0..45); # Alois P. Heinz, Jul 31 2008
-
Mathematica
CoefficientList[Series[(1 - 2z)/(1 + z - z^2), {z, 0, 40}], z]
Formula
a(n) = -a(n-1)+a(n-2), a(0)=1, a(1)=-3.
a(n) = term (1,1) in the 1x2 matrix [1,-2] * [-1,1; 1,0]^n. - Alois P. Heinz, Jul 31 2008
E.g.f.: exp(-(1+sqrt(5))*x/2)*(3 + sqrt(5) - 2*exp(sqrt(5)*x))/(1 + sqrt(5)). - Stefano Spezia, Jan 12 2020
Comments