cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075195 Jablonski table T(n,k) read by antidiagonals: T(n,k) = number of necklaces with n beads of k colors.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 11, 6, 1, 6, 15, 24, 24, 8, 1, 7, 21, 45, 70, 51, 14, 1, 8, 28, 76, 165, 208, 130, 20, 1, 9, 36, 119, 336, 629, 700, 315, 36, 1, 10, 45, 176, 616, 1560, 2635, 2344, 834, 60, 1, 11, 55, 249, 1044, 3367, 7826, 11165, 8230, 2195, 108, 1
Offset: 1

Views

Author

Christian G. Bower, Sep 07 2002

Keywords

Comments

From Richard L. Ollerton, May 07 2021: (Start)
Here, as in A000031, turning over is not allowed.
(1/n) * Dirichlet convolution of phi(n) and k^n. (End)

Examples

			The array T(n,k) for n >= 1, k >= 1 begins:
  1,  2,   3,    4,     5,     6,      7, ...
  1,  3,   6,   10,    15,    21,     28, ...
  1,  4,  11,   24,    45,    76,    119, ...
  1,  6,  24,   70,   165,   336,    616, ...
  1,  8,  51,  208,   629,  1560,   3367, ...
  1, 14, 130,  700,  2635,  7826,  19684, ...
  1, 20, 315, 2344, 11165, 39996, 117655, ...
From _Indranil Ghosh_, Mar 25 2017: (Start)
Triangle formed when the array is read by antidiagonals:
   1;
   2,  1;
   3,  3,   1;
   4,  6,   4,   1;
   5, 10,  11,   6,    1;
   6, 15,  24,  24,    8,    1;
   7, 21,  45,  70,   51,   14,    1;
   8, 28,  76, 165,  208,  130,   20,   1;
   9, 36, 119, 336,  629,  700,  315,  36,  1;
  10, 45, 176, 616, 1560, 2635, 2344, 834, 60, 1;
  ... (End)
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 86 (2.2.23).
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 496.
  • Louis Comtet, Analyse combinatoire, Tome 2, p. 104 #17, P.U.F., 1970.

Crossrefs

Main Diagonal: A056665. A054630 and A054631 are the upper and lower triangles.

Programs

  • Mathematica
    t[n_, k_] := (1/n)*Sum[EulerPhi[d]*k^(n/d), {d, Divisors[n]}]; Table[t[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 20 2014, after Philippe Deléham *)
  • PARI
    T(n, k) = (1/n) * sumdiv(n, d, eulerphi(d)*k^(n/d));
    for(n=1, 15, for(k=1, n, print1(T(k, n - k + 1),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
    
  • Python
    from sympy.ntheory import totient, divisors
    def T(n,k): return sum(totient(d)*k**(n//d) for d in divisors(n))//n
    for n in range(1, 16):
        print([T(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 25 2017

Formula

T(n,k) = (1/n)*Sum_{d | n} phi(d)*k^(n/d), where phi = Euler totient function A000010. - Philippe Deléham, Oct 08 2003
From Petros Hadjicostas, Feb 08 2021: (Start)
O.g.f. for column k >= 1: Sum_{n>=1} T(n,k)*x^n = -Sum_{j >= 1} (phi(j)/j) * log(1 - k*x^j).
Linear recurrence for row n >= 1: T(n,k) = Sum_{j=0..n} -binomial(j-n-1,j+1) * T(n,k-1-j) for k >= n + 2. (This recurrence is essentially due to Robert A. Russell, who contributed it in A321791.) (End)
From Richard L. Ollerton, May 07 2021: (Start)
T(n,k) = (1/n)*Sum_{i=1..n} k^gcd(n,i).
T(n,k) = (1/n)*Sum_{i=1..n} k^(n/gcd(n,i))*phi(gcd(n,i))/phi(n/gcd(n,i)).
T(n,k) = (1/n)*A185651(n,k) for n >= 1, k >= 1. (End)
Product_{n>=1} 1/(1 - x^n)^T(n,k) = Product_{n>=1} 1/(1 - k*x^n). - Seiichi Manyama, Apr 12 2025

Extensions

Additional references from Philippe Deléham, Oct 08 2003