A075254 a(n) = n + (sum of prime factors of n taken with repetition).
1, 4, 6, 8, 10, 11, 14, 14, 15, 17, 22, 19, 26, 23, 23, 24, 34, 26, 38, 29, 31, 35, 46, 33, 35, 41, 36, 39, 58, 40, 62, 42, 47, 53, 47, 46, 74, 59, 55, 51, 82, 54, 86, 59, 56, 71, 94, 59, 63, 62, 71, 69, 106, 65, 71, 69, 79, 89, 118, 72, 122, 95, 76, 76, 83, 82, 134, 89, 95, 84, 142
Offset: 1
Examples
a(6)=11 because 6=2*3, sopfr(6)=2+3=5 and 6+5=11.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
A075255 gives product of prime factors minus sum of prime factors.
Programs
-
Haskell
a075254 n = n + a001414 n -- Reinhard Zumkeller, Feb 27 2012
-
Magma
[n eq 1 select 1 else (&+[p[1]*p[2]: p in Factorization(n)]) + n: n in [1..80]]; // G. C. Greubel, Jan 10 2019
-
Maple
A075254 := proc(n) n+A001414(n) ; end proc: # R. J. Mathar, Jul 27 2015
-
Mathematica
Table[If[n==1,1, n +Plus@@Times@@@FactorInteger@n], {n, 80}] (* G. C. Greubel, Jan 10 2019 *)
-
PARI
a(n) = my(f = factor(n)); n + sum(k=1, #f~, f[k,1]*f[k,2]); \\ Michel Marcus, Feb 22 2017
-
Sage
[n + sum(factor(n)[j][0]*factor(n)[j][1] for j in range(0, len(factor(n)))) for n in range(1, 80)] # G. C. Greubel, Jan 10 2019
Formula
From Gus Wiseman, Jan 26 2025: (Start)
First differences are 1 - A090340(n).
a(n) = 2*n - A075255(n).
(End)
Comments