A075255 a(n) = n - (sum of prime factors of n (with repetition)).
1, 0, 0, 0, 0, 1, 0, 2, 3, 3, 0, 5, 0, 5, 7, 8, 0, 10, 0, 11, 11, 9, 0, 15, 15, 11, 18, 17, 0, 20, 0, 22, 19, 15, 23, 26, 0, 17, 23, 29, 0, 30, 0, 29, 34, 21, 0, 37, 35, 38, 31, 35, 0, 43, 39, 43, 35, 27, 0, 48, 0, 29, 50, 52, 47, 50, 0, 47, 43, 56, 0, 60, 0, 35, 62, 53, 59, 60
Offset: 1
Keywords
Examples
a(6) = 1 because 6 = 2 * 3, sopfr(6) = 2 + 3 = 5 and 6 - 5 = 1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[n eq 1 select 1 else n-(&+[p[1]*p[2]: p in Factorization(n)]): n in [1..80]]; // G. C. Greubel, Jan 11 2019
-
Maple
a:= n-> n-add(i[1]*i[2], i=ifactors(n)[2]): seq(a(n), n=1..100); # Alois P. Heinz, Aug 07 2015
-
Mathematica
Join[{1}, Table[n - Total[Times@@@FactorInteger[n]], {n, 2, 80}]] (* Harvey P. Dale, Sep 20 2011 *)
-
PARI
A075255(n)=n-sum(i=1,#n=factor(n)~,n[1,i]*n[2,i]) \\ M. F. Hasler, Oct 31 2008
-
Python
from sympy import factorint def A075255(n): return n - sum(factorint(n,multiple=True)) # Chai Wah Wu, May 19 2022
-
Sage
[n - sum(factor(n)[j][0]*factor(n)[j][1] for j in range(0, len(factor(n)))) for n in range(1, 80)] # G. C. Greubel, Jan 11 2019
Formula
a(n) = n - A001414(n).
a(n) = 0 if n is prime or if n = 4. - Alonso del Arte, Jul 31 2018