cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075255 a(n) = n - (sum of prime factors of n (with repetition)).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 2, 3, 3, 0, 5, 0, 5, 7, 8, 0, 10, 0, 11, 11, 9, 0, 15, 15, 11, 18, 17, 0, 20, 0, 22, 19, 15, 23, 26, 0, 17, 23, 29, 0, 30, 0, 29, 34, 21, 0, 37, 35, 38, 31, 35, 0, 43, 39, 43, 35, 27, 0, 48, 0, 29, 50, 52, 47, 50, 0, 47, 43, 56, 0, 60, 0, 35, 62, 53, 59, 60
Offset: 1

Views

Author

Zak Seidov, Sep 10 2002

Keywords

Examples

			a(6) = 1 because 6 = 2 * 3, sopfr(6) = 2 + 3 = 5 and 6 - 5 = 1.
		

Crossrefs

Cf. A145834 (= 0 followed by the nonzero terms of this sequence). - M. F. Hasler, Oct 31 2008

Programs

  • Magma
    [n eq 1 select 1 else n-(&+[p[1]*p[2]: p in Factorization(n)]): n in [1..80]]; // G. C. Greubel, Jan 11 2019
    
  • Maple
    a:= n-> n-add(i[1]*i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 07 2015
  • Mathematica
    Join[{1}, Table[n - Total[Times@@@FactorInteger[n]], {n, 2, 80}]] (* Harvey P. Dale, Sep 20 2011 *)
  • PARI
    A075255(n)=n-sum(i=1,#n=factor(n)~,n[1,i]*n[2,i]) \\ M. F. Hasler, Oct 31 2008
    
  • Python
    from sympy import factorint
    def A075255(n): return n - sum(factorint(n,multiple=True)) # Chai Wah Wu, May 19 2022
  • Sage
    [n - sum(factor(n)[j][0]*factor(n)[j][1] for j in range(0, len(factor(n)))) for n in range(1, 80)] # G. C. Greubel, Jan 11 2019
    

Formula

a(n) = n - A001414(n).
a(n) = 0 if n is prime or if n = 4. - Alonso del Arte, Jul 31 2018