A075513 Triangle read by rows. T(n, m) are the coefficients of Sidi polynomials.
1, -1, 2, 1, -8, 9, -1, 24, -81, 64, 1, -64, 486, -1024, 625, -1, 160, -2430, 10240, -15625, 7776, 1, -384, 10935, -81920, 234375, -279936, 117649, -1, 896, -45927, 573440, -2734375, 5878656, -5764801, 2097152, 1, -2048, 183708, -3670016, 27343750, -94058496, 161414428, -134217728, 43046721
Offset: 1
Examples
The triangle T(n, m) begins: n\m 0 1 2 3 4 5 6 7 8 1: 1 2: -1 2 3: 1 -8 9 4: -1 24 -81 64 5: 1 -64 486 -1024 625 6: -1 160 -2430 10240 -15625 7776 7: 1 -384 10935 -81920 234375 -279936 117649 8: -1 896 -45927 573440 -2734375 5878656 -5764801 2097152 9: 1 -2048 183708 -3670016 27343750 -94058496 161414428 -134217728 4304672 [Reformatted by _Wolfdieter Lang_, Oct 12 2022] ----------------------------------------------------------------------------- p(2,x) = -1+2*x = (1/(2*x))*x*(d/dx)*x*(d/dx)*(x-1)^2.
References
- A. Sidi, Practical Extrapolation Methods: Theory and Applications, Cambridge University Press, Cambridge, 2003.
Links
- Wolfdieter Lang, On a Certain Family of Sidi Polynomials, May 2023.
- Harlan J. Brothers, Pascal's triangle, Sidi polynomials, and powers of e, Missouri J. Math. Sci. (2025) Vol. 37, No. 1, 67-78.
- Doron S. Lubinsky and Herbert Stahl, Some Explicit Biorthogonal Polynomials, (IN) Approximation Theory XI, (C.K. Chui, M. Neamtu, L. Schumaker, eds.), Nashboro Press, Nashville, 2005, pp. 279-285.
- Avram Sidi, Numerical Quadrature and Nonlinear Sequence Transformations; Unified Rules for Efficient Computation of Integrals with Algebraic and Logarithmic Endpoint Singularities, Math. Comp., 35 (1980), 851-874.
Crossrefs
Programs
-
Maple
# Assuming offset 0. seq(seq((-1)^(n-k)*binomial(n, k)*(k+1)^n, k=0..n), n=0..8); # Alternative: egf := x -> 1/(exp(LambertW(-exp(-x)*x*y) + x) - x*y): ser := x -> series(egf(x), x, 12): row := n -> seq(coeff(n!*coeff(ser(x), x, n), y, k), k=0..n): seq(print(row(n)), n = 0..8); # Peter Luschny, Oct 21 2022
-
Mathematica
p[n_, x_] := p[n, x] = Nest[ x*D[#, x]& , (x-1)^n, n]/(n*x); a[n_, m_] := Coefficient[ p[n, x], x, m]; Table[a[n, m], {n, 1, 9}, {m, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 03 2013 *)
-
PARI
tabl(nn) = {for (n=1, nn, for (m=0, n-1, print1((-1)^(n-m-1)*binomial(n-1, m)*(m+1)^(n-1), ", ");); print(););} \\ Michel Marcus, May 17 2013
Formula
T(n, m) = ((-1)^(n-m-1)) binomial(n-1, m)*(m+1)^(n-1), n >= m+1 >= 1, else 0.
G.f. for m-th column: ((m+1)^m)(x/(1+(m+1)*x))^(m+1), m >= 0.
E.g.f.: -LambertW(-x*y*exp(-x))/((1+LambertW(-x*y*exp(-x)))*x*y). - Vladeta Jovovic, Feb 13 2008 [corrected for offset 0 <= m <= n. For offset n >= 1 take the integral over x. - Wolfdieter Lang, Oct 12 2022]
T(n, k) = S(n, k+1) / n where S(, ) is triangle in A258773. - Michael Somos, May 13 2018
E.g.f. of column k, with offset n >= 0: exp(-(k + 1)*x)*((k + 1)*x)^k/k!. - Wolfdieter Lang, Oct 20 2022
E.g.f: 1/(exp(LambertW(-exp(-x)*x*y) + x) - x*y) assuming offset = 0. - Peter Luschny, Oct 21 2022
Comments