cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075554 Denominators in the Maclaurin series for arctan(1+x).

Original entry on oeis.org

2, 4, 12, 1, 40, 48, 112, 1, 288, 320, 704, 1, 1664, 1792, 3840, 1, 8704, 9216, 19456, 1, 43008, 45056, 94208, 1, 204800, 212992, 442368, 1, 950272, 983040, 2031616, 1, 4325376, 4456448, 9175040, 1, 19398656, 19922944, 40894464, 1, 85983232
Offset: 1

Views

Author

Eric W. Weisstein, Sep 23 2002

Keywords

Comments

Terms with mod(n,4)=0 are zero, so a(n)=1 for those n.
arctan(1 + x) = Pi/4 + integral_{0..x} dt / (2 + 2*t + t^2). - Michael Somos, Apr 20 2014

Crossrefs

Programs

  • Mathematica
    Table[Denominator[(-1)^n*2^(-n-1)*((1+I)^n-(1-I)^n)*I/n], {n, 1, 41}] (* Jean-François Alcover, Apr 18 2014, after Vladimir Kruchinin *)
  • Maxima
    atan(n):=(sum((sum((2^(i-n-1)*(-1)^(i+n+(k-1)/2)/i*binomial(k-1,k-i)),i,1,k))*binomial(n-1,n-k),k,1,n));
    makelist(denom(atan(n),n,1,10); /* Vladimir Kruchinin, Apr 17 2014 */

Formula

a(n) = Denominator(sum(k=1..n, (sum(i=1..k, (2^(i-n-1)*(-1)^(i+n+(k-1)/2)/i*binomial(k-1,k-i))))*binomial(n-1,n-k))). - Vladimir Kruchinin, Apr 17 2014
Empirical g.f.: -x*(16*x^11 -16*x^10 -16*x^9 -24*x^8 -8*x^7 +4*x^6 +12*x^5 +22*x^4 +x^3 +12*x^2 +4*x +2) / ((x -1)*(x +1)*(x^2 +1)*(2*x^2 -1)^2*(2*x^2 +1)^2). - Colin Barker, Apr 18 2014