cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A075553 Numerators in the Maclaurin series for arctan(1+x).

Original entry on oeis.org

0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0
Offset: 0

Views

Author

Eric W. Weisstein, Sep 23 2002

Keywords

Crossrefs

Cf. A075554.

Programs

  • Mathematica
    a[n_] := I ((-1 - I)^n - (-1 + I)^n)/2^Floor[1 + n/2]; Table[a[n], {n, 0, 100}]
  • PARI
    a(n)=[0,1,-1,1,0,-1,1,-1][n%8+1] /* Michael Somos, Jul 16 2006 */

Formula

Euler transform of length 8 sequence [ -1, 1, 1, -1, 0, -1, 0, 1]. - Michael Somos, Jul 16 2006
G.f.: x(1-x+x^2)/(1+x^4) = x(1-x)(1-x^4)(1-x^6)/((1-x^2)(1-x^3)(1-x^8)). a(-n) = a(n+4) = -a(n). - Michael Somos, Jul 16 2006

A132314 a(n) = n*2^floor((n+1)/2).

Original entry on oeis.org

0, 2, 4, 12, 16, 40, 48, 112, 128, 288, 320, 704, 768, 1664, 1792, 3840, 4096, 8704, 9216, 19456, 20480, 43008, 45056, 94208, 98304, 204800, 212992, 442368, 458752, 950272, 983040, 2031616, 2097152, 4325376, 4456448, 9175040, 9437184, 19398656, 19922944, 40894464
Offset: 0

Views

Author

Simon Plouffe, Nov 19 2007

Keywords

Crossrefs

Programs

  • Maple
    seq(n*2^(floor((n+1)/2)),n=0..120);
  • Mathematica
    LinearRecurrence[{0,4,0,-4}, {0, 2, 4, 12}, 50] (* G. C. Greubel, May 30 2016 *)

Formula

a(n) = 2*A093968(n).
From Chai Wah Wu, May 30 2016: (Start)
a(n) = 4*a(n-2) - 4*a(n-4) for n > 3.
G.f.: 2*x*(2*x^2 + 2*x + 1)/(2*x^2 - 1)^2. (End)
E.g.f.: x*(2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x)). - G. C. Greubel, May 30 2016
Sum_{n>=1} 1/a(n) = log(2)/2 + log(1+sqrt(2))/sqrt(2). - Amiram Eldar, Feb 13 2023
Showing 1-2 of 2 results.